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Abstract -· ---·-·----• -· 

Discrete gravity information on the surface of the earth (and in space) is 
used for solutions of the free boundary value probJem in physical geodesy. 
The primary tool for these solutions is a harmonic embedding with the use of 
a mathematical sphere. (For local applications, a mathematical ellipsoid is to be 
preferred.) 

Various discrete techniques in physical geodesy are displayed. L 2 -norm 
minimizations on an embedded sphere is found to be equivalent to a simple 
technique with impulses on the reflected topography. This equivalence is also 
valid for a non-spherical external surface. Predictions with the use of 
harmonic embedding are not invariant with respect to the choice of the radius 
of the embedded sphere and a technique for the determination of the optimal 
radius is outlined. L 2 -norm minimizations on non-spherical surfaces ttre given 
a tentative approach. 

Methods for renormali7.ation of integral equations arfl used in order t.o 
obtain highly simplified solutions. This technique seems most promising for 
observations given in an equal area approach. 

The combination of local discrete observations and global spherical 
harmonics is explored by harmonic embedding. 

The difficulties of a mixed boundary value problem are recognized for a 
case where continuous data are given inside finite strictly defined surface 
elements. These difficulties are taken care of in the discrete case (with 
infinitesimal surface elements) by the use of a harmonic embedding. 

"Autoprediction" is used in order to design highly accurate predictors for 
smooth external surfaces. A technique with moving weighted averages gives 
exact predictions by the combined use of positive and "negative weights" for 
equidistant observations of low 'frequencies'. Higher frequencies are taken 
care of in a promising way by "the moving procedure". 

The fixed boundary value problem is discussed to some extent. It seems 
to deserve special interest for modern OPS-applications. Harmonic embedding 
is also here used in a discrete approach. 

The discrete methods are given the most sophisticated application in a 
relativistic geodesy. Some fundamental derivations are presented. 
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O. Introduction 

Traditional geodetic methods in physical geodesy were mainly founded on 
theories given by Stokes in ( 1849). If the gravity anomaly is known on a 
spherical external surface, then the disturbance potential can be computed by 
a closed integral. Derivations of Vening-Meinesz made it possible to compute 
the corresponding vertical deflections. Practical applications of this technique 
were limited to very smooth surfaces. However, several techniques were 
developed for the reduction of the gravity anomaly down to an internal 
reference surface (ellipsoid), 

Molodenskii (1945) presented a new technique, that gave the solution for a 
non-spherical external surface with known continuous gravity anomalies. The 
solution is given as an integral equation, 

The problem faced by Molodenskii is formidable in its complexity. Formally 
there is an a priori definition of the complete topography as well as the 
corresponding continuous gravity anomalies. The associated boundary value 
problem will not necessarily have a solution. Very heavy constraints on the 
surface have to be included in order to secure existence of a solution. See 
HHrmander (1976). 

With another technique, we only postulate the gravity anomalies to be 
given at a finite number of points. Between these given points we don't 
postulate any information about the topography or the gravity anomalies. 
Instead, we postulate harmonicity down to a fully embedded sphere. It is 
wanted to find a solution that satisfies all given discrete observations. The 
boundary value problem of the external surface is replaced by an auxilliary 
boundary value problem for the embedded sphere. The observations at the 
physical surface are simply used as constraints. See Bjerhammar (1962), 
(1963), and (1964). 

This new discrete approach avoids the crucial difficulties of an analytical 
solution by integral equations which require integration over the badly 
defined external surface. Instead of prescribing any gravity anomalies over 
the unsurveyed areas, we generate the missing data by the solution which 
avoids conflicting combinations of gravity and topography. The solution is 
mostly designed in the following way: 

1. A set of n discret~ estimates of the gravity anomaly is given on the 
non-spherical physical surface of the earth. 

2. The geocentric distance of the actual points as well as latitude and 
longitude are given (ignoring the geoidal separation). 

3. A fully embedded mathematical ~l:!_er_~ is located at the gravity center 
of the real earth. 

4. H_!:!_:rmq_nicity down to the embedded sphere is enforced and the gravity 
on this sphere has to satisfy all given observations. 
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5, The solution has to be regular at infinity, and the gravity center 
should be unchanged. 

6, The selected solution makes use of an auxilliary integral equation for 
the embedded sphere. A discretization of this integral equation gives a 
system of linear equationi;, Observations at the external surface define 
the constraints of the solution on the embedded sphere. 

7. Uni.9.ueness of the solution is normally obtained by restricting the 
number of unknowns to the number of observations and by minimizing 
some norm. _fixistence of a solution follows from the fact that there is an 
infinite number of harmonics which generate the gravity anomalies. 

8. Singularities at the observation points are avoided by the use of fully 
embedded spheres. Cf. Vening-Meinesz formula, the mixed boundary value 
problem, and the combined problem for spherical harmonics and a local 
gravity field. 

9. Extensions to observations of geoidal heights or vertical deflections 
can be made simply because the physical surface remains undefined 
outside the given observation points. (This is not in contradiction to the 
theories of the !!}ixed boundary value problem, which refer to a problem 
where different kinds of observations are given with strict boundaries on 
a well defined surface.) 

Collatz (1961) introduced the concept of collocation for the discrete 
solution of differential and integral equations. When there was an exact fit he 
called t.he technique pure collocation. The least squares technique was 
mentioned as an alternative to pure collocation. 

We will be using pure collocations, as well as least squares techniques. 
Our technique will be called "discrete harmonic embedding" (or simply 
harmonic embedding). Mostly impulses on an embedded sphere will be used. 

For the validity of analytical continuation of the gravity field down to an 
embedded sphere, see the theorems of Runge (1885), Walsh (1929), Keldych
Lavrentieff (1937) and Deny (1949). See also the study of Krarup (1969). 

This kind of solution is somewhat in conflict with traditional views on the 
analytical continuation of the gravity field inside a body and the solution for 
the embedded sphere has no geophysical meaning inside the external surface. 
The solution space defined by the nine conditions above allows for alternative 
"weighting". Krarup (1969) minimized an L 2 -norm on the embedded sphere 
(infinite dimensional Hilbert space approach). Moritz ( 1972) explored weighted 
L 2 -norm solutions with a presentation according to the theory of stochastic 
processes. It will here be shown that exactly the same solution is obtained in 
our (Euclidean space) approach when choosing the unknowns at geocentric 
distance inversely proportiona] to the geocentric distance of the observation 
points. All three versions are closely related. However, any Hilbert space 
solution (with symmetric kernel) cnn also be obtained in our Euclidean 
approach. The asymmetric kernels from the Euclidean approach cannot be 
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reproduced in the Hilbert space approach. The Hilbert space solution is 
presented in Euclidean space, with the use of impulses on the reflected 
topography. 

Solutions will be given for the free boundary value problem, the fixed 
boundary value problem (with known surface), the mixed boundary value 
problem and the combined problem (spherkal harmonics and Stokes' approach). 

Our geodetic boundary value problem is formally imprope...r!x_p_osed, if all 
harmonic coefficients are considered unknowns. Therefore, we have to 
introduce some regularization. This is most conveniently done by selecting a 
fully embedded sphere of optimal depth with respect to the given 
overdeterminations. An application of the least squares technique gives finite 
confidence intervals for the selected degree of freedom. 

Earlier applications have mainly been devoted to local problems, where 
there is a small cap with numerous observations, but. observations outside this 
cap have been excluded from the solution. 

The numerical problems with 
applications of global solutions. 
explored for an application to the 
is expected in some global cases. 

large data sets have prevented more general 
A renormalization of integral equations is 

harmonic embedding. Exceptional timesaving 

The discrete technique is given a final application to a relativistic 
geodesy. 

For a generalized least squares (collocation) technique, see GoldbergE~r 
(1962) and Moritz (1972), 
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1. Definition of the problem 

The geodetic free boundary value problem is mostly considered to be the 
principal problem of modern geodesy. The problem is difficult from 
mathematical point of view because the external surface is formally unknown 
(free). The gravity is here supposed to be known at the physical surface. 
The vertical coordinate is only known indirectly by observations of the 
geopotential differences between the given discrete points, The following set 
of data will be considered. See also Fig. 1. 

Observations: 

(astronomical) 
(astronomical) 

Latitude ♦ 
Longitude ;\ 
Gravity g 
Geopotential W (includes centrifugal force) 

Unknowns: 

Geocentric distance r 
External potential V (on the surface of the earth and in space) 

Auxilliary variables: 

T = W - U (1: 1) 

where U is the theoretical geopotential and T the disturbance (or 
disturbing) potential for the actual point. 

If the external surface was known, then the fallowing relations were valid 
(fixed boundary value problem) 

aT aw 
= 

clr clr 
au 

= - (g--y) 
clr 

(1: 2) 

where r is the geocentric distance, g observed gravity and -y theoretical 
gravity for the actual point. 

For further details concerning the definition of the problem and the 
boundary condition see Heiskanen and Moritz (1967), See also Bode- Grafarend 
(1981), H8rmander (1976) 1 Koch-Pope (1972), Mather (1973), Sanso (1977), (1978) 
and Svensson (1982b). 
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2. Boundary Value Conditions 

For the free boundary value problem, we cannot compute the theoretical 
gravity h) at the same height as the observation point. It remains to 
compute (-yw) the theoretical gravity at an altitude in the theoretical gravity 
field with a geopotential equal to W. Then the following relation will hold for 
a linear approach (Molodenskii) 

I 
AT= 0 outside the physical surface 
T = O(r- 1 ) as r ➔ m (regular at infinity) 

cJT 
ar 

Mostly, we wil1 make use of the notation 

(2:1) 

(2:2) 

A spherical approximation is frequently used and we obtain for an observation 
point P j• 

(2:3) 

Let r 0 be the radius of a sphere with the center at the gravity center of the 
earth, and r j the geocentric distance of the point with potential W. The 
gravity anomaly at the surface of the given sphere is denoted Ag* and we can 
compute the gravity anomaly at the point P J outside the sphere, by the use of 
the Poisson integral when postulating Ag Jr j harmonic and no masses outside 
the given sphere 

rj-rg ff !JI! 
= 4 D3 dS 

7ff j 
(2:4) 

where S is the surface of the sphere and c., the geocentric angle between the 
fixed point and the moving point on the sphere. See fig. 1 and 2. 

This expression is rewritten with the use of a Legendre polynomial 

a, 

Agj = 4! JI Ag* L (2n+l) r 0 n+ 2 rj(n+ 2 ) Pn(cosc.,) da (2:5) 
a n=o 
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where a is the unit sphere, We are now going to compute the disturbance 
potential T J and make use of the series expansion. 

(2:6) 
a n=o 

where Xn is an unknown scalar. The derivative of Tj with respect to rj 1S 

ff 
CD 

arJ -1 
Ag*L (n+l) ron+2 rj(n+2) Pn (cosc.,) da (2:7) = 4n Xn ar j a n=o 

We note that Ag j and the derivative of T j have the same powers of r j which 
means that our choice of series expansion for T J is appropriate. 

BOUNDARY 

CONTINUOUS 
GUTlTT UOIUL 

DISCRITI 

Fig. 1. 

SEE: MOLODENSKY 1945 

SEE: BJERHAt11AR 1963 
KRARUP 1969 
MORITZ 1972 

EMBEDDED SPnERE 

A continuous gravity anomaly is given at the external surface in the 
classical (free) boundary value problem. The gravity anomaly is only 
known at discrete points in the practical application. 
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3. Stokes• integral formu)a 

If eqs. (2:5), (2:6) and (2:7) are inserted in eq. (2:3), then we obtain an 
integral equation for the determination of the unknown Xn - values. Each 
degree has to have identical coefficients on both sides of the equality sign, if 
there is a solution. •rhus we obtain 

-(n+l) Xn + 2xn = -(2n+l) (3:1) 

or 

Xn = (2n+l)/(n-l) (3:2) 

This solution is only valid for n> 1 and we obtain (gravity center unchanged 
for Xo = 0) 

"' 
T = !:Jt JJ Ag* \ 2n+ 1 +1 ( ) j 4n u L_ n-l tn Pn cos~ da 

a n=2 

where t = r 0 /rj. Tj can be written in a closed formula 

Tj =~ff Ag* s(~) da Stokes integral formula 
a 

where S(~) is the generalized Stokes' function, defined by 

s(~) = t(l+ 2/d - 3d - St cos~ 

d 2 = 1 + t 2 - 2t cos~ 

3t cos~ ln u) 

u = ((d+l) 2 
- t 2 )/4 = (l - tcos~ + d)/2 

The derivation by Stokes was given for t=l. 

Geoidal separations N are obtained from the disturbance potential T: 

(Drun's formula) 

(3:3) 

(3:4) 

(3:5) 

(3:6) 

where 7 is the theoretical gravity at the geocentric distance r. If all 
observations refer to a sphere then t=l. The classical definition of the geoid 
is the equipotential surface nearest to mean sea level. This surface cannot be 
determined in a correct way over the continents. Hirvonen used the concept 
telluroid for the joint presentation of the undulations of the equipotential 
surfaces at the physical surface. 
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4. The discrete boundary value problem 

Our previous approach is not directly applicable to the real earth because 
Ag*-values are not available for a. non-spherical earth. 

There is good justification for postulating harmonicity down to a fully 
embedded sphere. If we had a fixed boundary value problem, we could justify 
this procedure according to the theorems of Runge (1885), Walsh (1929) and 
Keldych-Lavrentieff (1937), The extension to the free boundary value problem 
should not be too provocative when considering the close relation between the 
two problems. 

Discrete boundary value problem: A finite number of discrete 
observations of the gravity anomaly is given on the surface of the earth. It 
is wanted to find a solution, that satisfies all given observations and is 
regular at infinity. Cf. Bjerhammar (1962), (1964). 

We are going to make use of a harmonic embedding and our solution has 
to satisfy the following conditions: See Fig. 1. 

AT::: 0 outside a sphere of radius r 0 • 

(Regular at infinity) 

on the external (physical) surface (discrete 
approach) 

where r 0 is the radius of a fully embedded sphere. 

After omission of the two lowest degrees we obtain from eq. (2:5) 

4! J J Ag*(( t2-t 4 )(l+t2-2tcosc.,)- 3 /
2 

- 3t 3 cosc.r-t2 )dO' 
(f 

(4:1) 

We don't know Ag* and therefore we have to consider eq (4:1) as an integral 
equation. For further details see Bjerhammar (1962) and (1964), 

For the solution we make use of a linear matrix equation. 

Ag ::: AAg* (4:2) 

where Ag is the vector of the given discrete observations, and A is a square 
(or rectangular) matrix with 

Aj1 = (t 2-t 4
) d}l - 3t 3 cosc., - t 2 

t = r 0 /rj 

8 
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Here d Ji is the distance between the fixed and the moving points on the 
unit sphere and Ag* is a vector of unknown quantities which are located on 
the embedded sphere at the nadir points of the given observations. This 
means that we postulate that Ag* only exists for the selected nadir points and 
our integral equation is converted to a linear matrix equation. It is 
convenient to consider the Ag*-values to be impulses (or Dirac quantities} 
connected with infinitesimal surface elements. In this way, we avoid• all 
integrals. (Alternative choices of Ag*-values • can be considered.) See also 
sections 4.1-4.3 for alternative interpretations. For the choice of nadir point 
see section 4.5. 

Our derivation of eq (3:3) required the deletion of degrees one and zero. 
However, these degrees are normally deleted when computing the gravity 
anomalies and it is therefore mostly unnecessary to make use of this deletion 
of the kernel, and we use instead the approximation. 

(4:4) 

A solution of eq (4:2} gives the unknown Ag*-vector (for non-singular 
systems) 

(4:5) 

For small systems, we can make use of traditional matrix inversions. Very 
large systems will be more conveniently solved by iterative methods. 

The gravity anomaly (Ag) 9 anywhere on (or outside) the physical surface 
is given by (see sections 4.1-4,7 for further details) 

(4:6) 

where 

or 

tq = ro/rq 

In the same way we obtain the disturbance potential (Tq) from eq. (3:4) 

(4:7) 
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Let ♦ be the geocentric latitude. 
The north vertical deflection ((q) is then 

4 L .lli!tlq 1 COSolq 1 Agf 
7 q i iJc., 

(4:8) 
whe•e 

- COSolqi 

°'qi is the azimuth (from north) counted clockwise to the point P 1 • Let A be 
the longitude. 

The ea.st vertical deflection (TJq) is 

'1Jq = 

= -

(!!hl) iJc., qi 

The last expression is the generalized Vening-Meinesz formula. 

u = (1 tqCOSc.Jqi + d)/2 

cosolqi = (cos♦qsin♦ 1 - sin+qcos♦ icos(:>+. 1 - Aq))/sin"'qi 

sinaq, = (cos♦ isin(:>+. 1 - Aq))/sin"'qi 

(4:9) 

(4:10) 

If the embedded sphere is replaced by the embedded (international 
reference) ellipsoid, then geodetic latitudes should be used instead of 
geocentric latitudes. The error of the ellipticity is mostly annihilated in the 
collocation techniques. We use the same predictor when going down and up. 
Therefore, no harmful prediction errors should follow from the use of the 
Poisson formula on an ellipsoidal surface. The prediction error will probably 
dominate over the ellipsoid errors. Predictions of the geoidal heights should 
be more sensitive to the ellipticity. (The ellipticity error is about 1 m for the 
geoidal heights with dj'l dependence. Gravity anomalies have dj'f 
dependence,) 

The gravity disturbance iJT/iJr is obtained from 
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aTq = _ Ag _ 2Tq 
iJrq q rq (4:11) 

or 

aTq = ro L S~c.,)qt Agf iJrq i rq 
(4: Ila) 

where 

Sic.,\ = _ t 2 [l-t 2 4 ( 1 +d)] ~ + -d + 1 - 6d - tcosc., 13 + 6 ln -co;"' 
arq r 0 d 3 

(Subscripts of c., are excluded when there is no risk of confusion) 

The gravity disturbance vector in space is in geometric coordinates 

iJT - -
(!;) q ax costqcos:\q - sintqcos:\q - sin:\q 

iJT - - 1 (aTJ = costqsin:\q sintqsin:\q COSAq av rq a, 
1 iJT - -

az sintq costq 0 
rqc!s~q (!J q 

(4:12) 

where tq is geocentric latitude and Aq longitude of the actual point q. See 
Heiskanen-Moritz (1967) for definitions. 

If we only make use of harmonic reduction down to the 
reference ellipsoid" then we should use geodetic latitudes 
geocentric latitudes all over in this section. 

"embedded 
instead of 

Improved solutions are obtained when choosing observations with "equal 
spacing". However, the observations are mostly given in an irregular grid. 
For such models (an equidistant grid is impossible on a sphere), a 
preprocessing can be used in order to replace the original randomly 
distributed observations by a set of data which are given in a regular 
pattern. 

A successful application of the Poisson 
choice of the radius of the embedded sphere. 

technique requires a suitable 
Some comments are justified 

1. A small r 0 -value gives small t-values. The high powers of t will be 
lost in a normal computation and the solution wHl mainly be based on 
the lower degrees. Consequently, we obtain increased smoothness by 
decreasing t. 

2. The stability of the solution increases with increasing t. 
(Non-diagonal elements are then suppressed.) 

For further details see Bjer hammar ( 1962), (l 964), ( 1968), ( 1969), ( 1970), 
(1974), (1975), (1975a), (1976), (1978) and (1982). See also Barlik (1972), Cruz 
(1985), F8rstner (1966), Xu et al. (1984), Katsambalos (1981), Sj8berg (1975), 
(1978) and (1979), 
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4.1 Integration techniques 

If Ag* is considered constant inside each surface element A'1 i, then we can 
write eq, (2:4) 

(4.1:1) 

d 2 = 1 + t 2 - 2tcos~ 

where n is the number of surface elements, In a rigorous application of this 
technique we have to integrate over the selected surface elements. 

For most applications, we have to make use of the approximation. 

n 

L ~ Acri 
i=l d]i 

(4.1:2) 

where d j I is measured between the point (j) and the center of the surface 
element Aa i. We have then a system of linear equations 

AAg* = Ag 

(4.1:3) 

This matrix equation has a simple solution by the use of the matrix 
inverse. 

There are some practical complications with the technique of eq. (4.1:1), 

1. Applied models with a continuous presentation of Ag are not available 
for geodetic applications. 

2, Surface elements have to be defined, 

3. Integration has to be made. 

The justification for an analytical integration is only found in theoretical 
models. It is questionable if any improvements can be expected from an 
analytical integration applied to data obtained from the real earth. 

Therefore, we mostly try to avoid using any kind of integration. 
The renormalized approach of section 6 will sometimes benefit from the 

application of analytical integration for the elements of the principal diagonal. 
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4.2 Invariance with respect to the size of the surface elements. 

Our integral approach postulates the application of infinitesimal surface 
elements on the embedded sphere. A practical computer oriented approach will 
require a fully discrete technique. It will here be shown how the 
integrational technique can be used for a fully discrete procedure. The 
method to be presented is the one that was used in the early papers by 
Bjerhammar (1963), (1964). The embedded spherical surface is subdivided into 
a finite number of 'well shaped' surface elements. Inside each surface 
element, the gravity anomaly is considered constant. Considering the small 
size of the surface element, a single point will be chosen to represent the 
element. Similar techniques have frequently been used in the classical 
physical geodesy. Our integral equation (4:2) is now written: 

Agj = AJ 1 Agf + Aj2Agf + AJ3Agf + 

where according to eq. (4.1:2) 

rj + rt 

j = 1,2, ... n (4.2:1) 

i 1,2, ... n 

The whole system of linear equations can now be written as a matrix equation 

Ag= AilASAg* n,, (4n)- 1 Ajt (rj 2 -rg)rj 1 rjt (4.2:2) 

where Ag is a vector A a matrix, Il a diagonal matrix, AS a diagonal matrix and 
Ag* a vector. If A, Il and AS are non-singular, then any prediction of a 
Ag*-value outside the physical surface will be 

(4.2:3) 

Consequently, we have proved that this procedure is invariant with 
respect to the size of the surface elements and we are also entitled to 
disregard the quantity 411', This means that we can equally well choose 
infinitesimal surface elements for this kind of approach. When choosing 
infinitesimal surface elements, then the unknown Ag*-values can be considered 
as "impulses" or Dirac quantities. 

Clearly, we have fully justified using the matrix equation 

AAg* = Ag 

where 

See also Bjerhammar (1964), Sj8berg (1978), Katsambalos (1981) and Cruz 
(1985), An alternative interpretation with Dirac impulses will be given in 
section 4.3. 
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4.3 Dirac impulses 

The most simple way of defining the impulse technique is to postulate 
Ag* = 0 for all points on the embedded sphere with the exception of the 
selected Dirac points, where the gravity anomalies are unknown impulses on 
infintesimal surface elements. Another interpretation is given below. See Fig. 
2. 

The integral equation (2:4) has a parameter Ag* which is rewritten 

(4.3: 1) 

when r is the vector of the actual point on the embedded sphere r 1 the 
vector of the i-th impulse Agf on the embedded sphere, and n the number of 
impulses. 

The Dirac "delta" function is defined in the following way for a function 
f(r) 

4! ff f(r)~(r-ri)da = f(ri) 
(1 

We obtain fort = r 0 /rj 
n 

t2-t• 
ff 

r Agf~(r-i-1) 
Agj = d3 da 

47T 
(1 

After changing integration and sunonation 

Equations (4.3:2) and (4.3:4) give for f(r) = l/d3 

or in matrix notations 

Ag = AAgx 

(4.3:2) 

(4.3:3) 

(4.3:4) 

(4.3:6) 

We have here temporarily used Agx for the impulses and otherwise Ag*. 
For the following, we use Ag* for the impulses as well as the continuous 
presentation, if there is no risk of confusion. Mostly we work with impulses. 
However, a continuous Ag* will be used in the renormalized approach. See 
also Sj8berg (1975) and Katsambalos (1981). 
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The gravity anomalies dg are given at discrete points on the 
topographical surface. Unknown impulses Ilg* are located on an 
embedded sphere. The gravity anomaly is zero between the unknown 
impulses. (Dirac approach). In the geodetic terminology, there is 
mostly equivalence between the concepts: topographical, physical and 
external surface. We are here considering all three alternatives as 
equivalent. 
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4.4 Iterative solutions 

Iterative solutions of large systems of equations are mostly prefered. The 
method of Jacobi is an attractive technique for matrix equations. The iterative 
solution of our matrix equation (4:1) is 

HAg*(k+i) = Ag - (A-H)Ag*(k) Hji = Aii for j=i else Hji = 0 (4.4:1) 

where (Agf)(k) is the k-th iterative value and Agf(k+i) is the next improved 
value. The iterative method of Gauss-Seidel makes use of a slight modification 
simply by replacing (Agf)k values of the right member by (Agf)(k+t) values 
whenever these values are available. In this way a faster convergence is 
obtained. Sometimes a slightly simpler approach is used 

(4.4:2) 

This expression can be further simplified for a small depth to the embedded 
sphere 

(4.4:3) 

or 

(4.4:4) 

Eq. (4.4:3) simply uses the first derivative of the gravity anomaly. For 
still higher accuracy, higher derivatives should be included. 

By differentiating the boundary condition 

aT 2T -+-= 
arj rj 

with respect to 

!la - - a2T 
ar j - clrj 

or after putting 

rj we obtain 

_L aT + 2T 
rj arJ rj 

r 0 = rj we obtain the approximation 

Cf. eq. (4.4:2) and Heiskanen-Moritz (1967). 

(4.4:5) 

(4.4:6) 

(4.4:7) 

Series expansions of Ag* have been used in some studies (Bjerhammar 1964 
and F8rstner 1966). 

Ag* Ag+ C1h + C2h2 + C3h3 + ... (4.4:8) 
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4.5 Optimal location of the unknowns 

For most applications we have made use of unknowns on the embedded 
sphere at the nadir points of the given observations (11 Carrier points"), 

However, we are free to make use of unknowns in. quite arbitrary 
positions. This means that we have an unlimited number of alternative 
solutions, which can be considered for our kind of solution. These 
alternatives are mostly only of theoretical interest, because they always lead 
to systems of equations, which are less stable than our previous solutions 
without any unknowns outside the nadir points. 

Let the elements of the kernel be given by 

Aji = (t 2-t4 )(l+t 2-2tcosw)-3 / 2 (4.5:1) 

The maximum value of Aji is obtained after a differentiation with respect 
tow and putting the derivative equal to zero for the selected r 0 -value. 

(4.5:2) 

Thus we obtain the maximum value of Ajt for w = 0 

If the corresponding Dirac impulse is located at the nadir point on the 
embedded sphere, then we have 

(4.5:3) 

The ratio between the diagonal element of the largest and the smallest 
possible elements of the same equation is then 

(A··] il!:l2_, 
~max= (l-t)3 (4.5:4) 

This ratio is larger for the nadir points, than for any alternative choice. 

Clearly, we find the best diagonal dominance, when choosing the nadir 
points for the unknown impulses. 

We conclude that the nadir points are optimal with respect to the stability 
of the solution (maximal diagonal dominance), for any selected embedded 
sphere. 

A sufficient condition for an iterative convergence of our matrix equation 
is (see Bjerhammar (1969), Sj8berg (1978)) 

This condition is most easily satisfied if w = 0 for the geocentric angle 
between an observation and its associated unknown on the embedded sphere. 
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4.6 Buried mass technique 

The disturbance potential T J is defined by a set of point masses located 
in the interior of the earth on an embedded sphere (see Fig. 3), 

(4.6:1) 

where m 1 is the mass of the disturbing body, Dj i the distance between the 
mass element and the fixed point (j), The gravity anomaly is defined by 

GEODETIC BOUNDARY 
BURIED MASS 

\ 

-, 0"'1 
N 

\ 

\ 

(4.6:2) 

VALUE PROBLEM 

...... 
' ' ' ' ' ' ' ' \ 

' 
Known~:ng ,lg and ng3 

1 2 

' \ 
Unknown~: m, m, and m3 1 2 

\ 

Fig, 3. A set of discrete gravity anomalies ~g is given on the topograhical 
surface. Unknown point masses are buried in the interior of the 
earth on an embedded sphere. 
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Thus we obtain for the spherical approximation 

(4.6:3) 

where 

If the disturbing masses are located at the nadir points of the 
observations on an embedded sphere, then this approach results in a Dirac 
approach. We obtain a system of linear equations which define the unknown 
masses, Cf. Cruz (1985). 

The unknown mass disturbances m1 are determined by a system of linear 
equations which can be written as a matrix equation. 

Am= Ag 

where 

= rJ-r0 cosc.> 
.Dji 

(4.6:4) 

(4.6:5) 

The most simple case will be a system with a non-singular A-matrix. The 
solution will then be unique. 

Predictions of the disturbance potential on and outside the physical 
surface is made with eq (5.4:1). Predictions of the gravity anomaly are made 
with eq (5.4:3). In both cases, the index j will now refer to the prediction 
points. 

Vertical deflections are given by 

t . = L _l_ ilT COSo!. = 
J . rpj iJGJ I 

1 

TJ - L __1_ .!T sino1 1 = 
J - i r j"Y j ilc.> 

(north) (4.6:6) 

(east) (4.6:7} 

The buried mass technique gives a system of linear equations with 
elements closely related with our previous expression in section 4. 

However, there is a principle difference between the two approaches, The 
buried mass technique operates with mass-displacements, which we have 
avoided in our previous method. 
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Local applications of this technique give results very similar to the Dirac 
approach with gravity anomalies. Global applications might be Romewhat more 
questionable for the buried mass technique. However, the method accepts the 
unknowns at arbitrary positions. This means that the buried masses could be 
located on the surface of the reference ellipsoid. See Balmino (1972), Blaha 
(1983), Heikkinen (1981), Kakkuri (1983), Vermeer (1984), and Cruz (1985). 

4. 7 Single layer densities 

Let the disturbance potential be defined by 

TJ -· r 0 £I µ(td- 1 - t 2 cosw t)d<t 

d2 - 1 + t 2 - 2tcosw t~r 0 /rj 

(4.7:1) 

where µ is the density on an embedded sphere. The two lowest degrees are 
here excluded. 

A differentiation gives 

6T/6rj = JI µ[(t 3 cosw - t 2 )d- 3 + 2t 3 cosw + t 2 )d<t (4.7:2) 

The integral equation of the free boundary value problem (see eq 2:3) is then . 
Ag II µ[(t 2 

Cf 
t 3 cosw)d-3 - 2t 2 d- 1 + t 2 ]d<t (4.7:3) 

A discrete approach gives the matrix equation (Dirac approach) 

Aµ= Ag 
where 

(4.7:4) 

We have chosen to exclude the two lowest degrees of the kernel in spite 
of full harmonicity for the classical single layer approach. This is expected to 
give an improved performance. 

See also Xu and Zhu (1984). 
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5. Least squares solution 

We can easily include any number of overdeterminations and obtain from 
eq, (4:1) a stochastic model with the observation errors ,: 

AAg* = Ag - ,: E{,:} = 0 and E{u T} = p-1 

where E{} represents the stochastic expectation. 

The best linear unbiased estimator is 

The residuals (V) are defined by 

V = Ag - AAg* with vrpv = minimum 

(5:1) 

where P is the weight matrix of the observations. Here we have used more 
Ag-observations than the number of unknown Ag*-values. 

An unbiased estimate of the variance is 

(5:2) 

where f is the degree of freedom (number of overdeterminations). 

For a more general case we obtain 

U = FAg* 

Confidence interval for p%: U :1: s • tp (~ from t distribution). 

It should be noted that this approach operates with estimated standard 
deviations (s) which are not directly comparable with the standard deviations 
obtained without overdeterminations. The least squares solution is not a pure 
collocation according to Collatz, who used collocation as an alternative to least 
squares solutions. See also section 10 and Fig.4. 

The application of this technique gives two alternatives of special interest: 

I. The unknown Ag*-values are selected at the nadir points 
of the given observations, The rernammg observations 
overdeterminations (to be chosen evenly distributed). 

of a subset 
define the 

2. The unknown Ag*-values are selected in a regular grid on the 
embedded sphere, without reference to the given points. 

Practical applications seem to indicate that the first approach is most 
attractive. However, no detailed studies are available. If the method 2 is 
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selected, then very unrealistic models can be created, with the unknowns far 
away from the given points. 

From a purely theoretical point of view, we consider a traditional least 
squares technique as an important procedure for finding the optimal solution 
when allowing the radius of the embedded sphere to be a variable, 

This kind of problem is formulated in the following way. 

A finite set of observations (here gravity anomalies) is given on the 
surface of the earth. Harmonicity down to an embedded sphere of the radius 
r 0 is enforced when computing a set of m unknown impulses on the embedded 
sphere (at the nadir points of m selected observations). A least squares 
solution has to be given for the case when the radius of the embedded sphere 
as well as the impulses are considered unknown. The variance to be 
minimized is generated at the observation points. The solution should apply 
for n :i. m + I. 

The observation equations are given in our earlier notations 

Mg* = 4g - V 

Ajt = (t 2 -t4 )(1+t 2 -2tcos~)- 3 / 2 = (t 2 -t4 )dJl 

(5:3) 

(5:4) 

where V is a vector of the residuals. Now we consider r 0 to be a given 
primary value of the radius of the embedded sphere and 4g! a vector of 
primary approximate values of the unknown vector 4g*. Furthermore, we 
introduce the parameters 

4g - 4g0 = 6g 

4gf + 6g* = 4g* 

A series expansion gives (first derivative of r 0 included) 

where 6r is the correction of r 0 

We put 
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(5:6) 

(5:7) 

(5:8) 

(5:9) 
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and obtain the least squares solution 

(5: 11) 

(5:12) 

Here P is the weight matrix of observations. The final solution gives the 
necessary corrections to the approximate unknowns. 

The variance is obtained from 

s 2 = V1PV/(n-m-1) (5: 13) 

Let Ube a linear combination of the unknowns 

U = F [ Ag*o + og*] (5:14) 
r 0 + lfr 

where F is a row vector of scalars. Then the variance of U is given by 

sB = s 2F(B 1 PB)- 1 F1 (5:15) 

Confidence intervals are computed in the traditional way. 

For another technique see also section 5.4 with obvious simplifications. 
That kind of approach is an iterative least squares technique that benefits 
from the good condition numbers. It is also directly applicable to most 
iterative solution techniques, Very large systems are normally solved by the 
use of iterative methods. Furthermore, the technique makes use of all 
derivatives and not only the first derivative used in traditional least squares 
techniques. For smaller systems of equations, traditional least squares 
technique with normal equations might be a realistic alternative. A joint 
solution for Ag* and the correction of a primary radius can then be 
considered. 

Originally, we made our problem properly posed by postulating that the 
radius of the embedded sphere is known. However, the predictions between 
the given points are very much dependent of the choice of the radius of the 
embedded sphere. This means that we have a whole solution space, that 
satisfies our primary boundary conditions: 

(5:16) 

If r 0 is considered as an unknown, then we have an unlinear least 
squares problem for n > (m+ 1 ). 

Traditional least squares technique is not easily applicable to this kind of 
problem. The main explanation is of course that we operate with almost 
singular systems. Some kind of regularization will therefore sometimes be 
needed. See section 5.3 for further details. 
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It should finally be noted that we have already in the primary analysis 
made use of an indirect regularization, when selecting the unknowns at the 
nadir points of the given ob1:1ervations. 

Least squares solutions of this kind give unbiased predictions of the 
gravity anomaly on the physical surface and in space. 

It should be noted that we have not postulated that the expectation of the 
gravjty anomaly is equal to zero in this approach, Such a postulate has 
frequently been used in the geodetic literature, For such an approach any 
linear transformation of the gravity anomaly vector has zero expectation and 
can be considered to give an unbiased estimator. 

, , , 
I 

I 

Fig. 4. 
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A set of discrete gravity anomalies t.g is given on the topographical 
surface, A subset of the given points have unknown impulses t.g* on 
the embedded sphere. 
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5.1. Advanced Stochastic Model 

A more rigorous analysis of the stochastic model will now be considered 

(5.1:1) 

where fig represents the observed gravity anomalies, £ the accidental 
observation errors and higher harmonics of the gravity anomaly, fig* the 
unknowns and A the known coefficient matrix. The stochastic expectation E{} 
will be 

E{E} = 0 

E{fig} = fig (zero expectation quantities of fig excluded) 

(5.1:2) 

(5.1:3) 

We start from a case where the weight matrix is considered to be a unit 
matrix. The residuals (V) are then 

(5.1:4) 

We introduce the notation 

(5.1:5) 

Then we obtain the relation 

(I-A 0
),; = V (5.1:6) 

Here we introduce so called Hadamard products (fl) and obtain: 

(5.1:7) 

where the Hadamard product of two identical vectors gives a new vector with 
all elements squared. We obtain the expectations: 

[(I-A 0 )fl(I-A 0
)]~

2 = E{VflV} E{EiEi} = ~f E{EiEj} = 0 for i # j 

where ~2 is a vector of the unknowns 

(5.1:8) 

Equation (5.1:8) gives an unbiased estimate of the ~2 -values (variance 
components vector) for the stochastic model. If the model is realistic then no 
negative ~2 -values should be found. If this is not the case, then a smaller 
number of unknowns has to be allowed, until satisfactory results are obtained. 
It is hardly meaningful to consider all individual variance components as 
unknown! The solution of eq. (5,1:8) gives a minimum norm quadratic unbiased 
estimation of the variance components. (MINQUE approach), 

The final solution is 

(5.1:9) 
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where 

The final solution will give unbiased estimates of the variance components 
which define the inverse weight matrix p- 1 when this is of diagonal type. If 
non-diagonal elements are present, then there is no straight forward 
technique of estimating these elements. 

The technique of "least squares collocation ti according to Moritz ( 1972) 
uses covariance functions for the computation of covariance matrices. See 
section 10, 

The stochastic approach will be somewhat critical because an integral 
equation will have an infinte number of unknowns and our discrete solutions 
will normally operate with a finite number of unknowns. The degree of 
freedom is therefore strictly related to the selected stochastic model, which 
defines the regularization applied. 

Practical experience indicates that the validity of predictions of the 
gravity anomalies between the given observations, can be impaired when using 
an exact fit at given points. This is mostly true for "improper models" where 
point values are combined with large surface elements. Cf. section 17. 

If there are no observation errors, then we can still benefit from a least 
squares solution with more observations than unknowns. The parameter model 
AAg* takes care of the low harmonic information. The residuals are generated 
by higher harmonics and are given the expectation equal to zero. Clearly, the 
higher harmonics are treated as accidental errors (not as unknowns) in this 
approach. A stochastic model with all harmonics unknown is improperly posed 
and not useful for technical applications. 

There is no straightforward way of separating higher harmonic from 
accidental errors, nor is there any need of doing it. 

Our degree of freedom is gained by choosing a sufficiently low number of 
unknowns. 

Moritz (1972) treated the whole gravity anomaly as a stochastic variable 
with the expectation 

E{Ag} = 0 

Moritz (1980) gave a modified approach and considered the whole gravity 
to have the expectation equal to the value of the II signal". 

Smoothed solutions are obtained from 

(A+AI)Ag* = Ag (5.l:9a) 

where tJ. is a small scalar. This approach accepts a strictly singular A-matrix 
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and gives a unique solution with some smoothing, 

We also give the solution with generalized inverses (see Bjerhammar 1973 
p. 106) 

(5.1:10) 

This kind of solution minimizes the variance as well as the sum of the 
squares of the unknowns, Equation (5.1:10) can be rewritten 

(5.1:11) 

where we have used generalized inverses (A-) with the definition 

(5.1:lla) 

The application of matrix inverses is of limited value for the solution of 
the boundary value problems in physical geodesy. The large number of 
observations will mostly prevent a successful application of matrix inverses. 

Eq. (5.1:10) is rewritten when using weight matrices 

where P is the weight matrix. 

Most geodetic stochastic models are of a more complicated kind 

AAg* = Ag - E - s 

where 

E(r.) = 0 E(s) 0 

s 
with the solution 

(auto-covariance matrix of the signal) 

and the predicted signal 

s = R(sV1 )(E(VV1 ))- 1 V 

V = Ag - AAg* 

(5.1:12) 

(5.1:13) 

(5.1:14) 

For further details see Bjerhammar (1973), Bulmer (1967), Bross (1950), La 
Motte (1973), Liebelt (1967}, Moritz (1980), Grafarend (1976) and Schaffrin 
(1983). 
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5.2 Solution space of the collocation problem 

We now consider a case with more unknowns on the embedded sphere, 
than the number of observations on the external surface. The unknowns were 
earlier located to the nadir points on the embedded sphere. Now we also 
accept observations without any Dirac points. This model is written 

n > r 1BB1 1 = 0 (5.2:1) 

where 

The solution space is (see for example Bjerhammar 1973) 

(5.2:2) 

where Mis an arbitrary matrix. For M=O we have the unique solution 

(Cf. condition adjustment.) (5.2:3) 

with 

(See Bjerhammar (1969a), Krarup (1969).) 

The least squares collocation of Moritz (section 10) is here obtained as a 
limiting value if the number of Ag*-values goes to infinity. For a proof of 
this kind see Sj8berg (1975). Eq. (4:3) is still valid with t=rj/rJri where r 8 
is the radius of the embedded sphere and r 1 the geocentric distance of the 
moving point. 

A comparison with the infinite dimensional Hilbert space approaches 
(sections 9 and 10) is here somewhat premature. However, we note that the 
Hilbert space solutions minimize an L 2 -norm on the embedded sphere. Such 
solutions have a global structure. 

The solution (5.2:3) is locally oriented. All unknown impulses can be 
located in the neighborhood of the observations. 

We can compare this approach with the traditional least squares condition 
adjustment. The solution is only justified if the following condition is 
satisfied 

E{Ag} = 0 (5.2:4) 

where E{} represents the statistical expectation. If this condition is not 
satisfied, then the solution is normally biased. It is simply a minimum norm 
solution. 

There has been conflicting arguments in the geodetic literature concerning 
the validity of eq. (5.2:4). See references in section 10 for the infinite 
dimensional approach. 
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5.3 Least squares solution of optimal condition numbers 

If the number of observations increases, then our discretized integral 
equation normally becomes more and more singular. We rewrite our matrix 
equation 

AAg* = Ag (5.3:1) 

The eigenvalues X of the A-matrix are defined by the relation 

IA-HI = 0 (5.3:2) 

The stability of the matrix equation is mostly measured by the parameter ,c 

(5.3:3) 

This parameter is called the condition number of the matrix. The 
condition number is infinite for a singular system, because such a system has 
at least one eigen-value equal to zero. The best stability is obtained for the 
condition number equal to 1. For further details, see textbooks on numerical 
analysis. 

If A is a full rank matrix which is symmetric, then we also obtain the 
unique solution from the alternative matrix equation 

(5.3:4) 

with the eigenvalues 

(5.3:5) 

The condition number of this new system can be written with the previous 
eigenvalues 

(5.3:6) 

This means that the stability of a solution is very much impaired when the 
system is almost singular and when the traditional Gauss-Markov model is 
used. We find that the technique of using normal equations is very 
unfavorable for nearly singular systems. Our kind of integral equations, are 
nearly singular for most discrete applications. Therefore, normal equations 
have been of limited value for the solution of the free boundary value 
problem. 

For discretized integral equations, we will outline a stochastic model of 
optimal condition number, instead of the traditional minimum variance approach 

(5.3:7) 
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Approximately equal spacing for the given observation points is 
postulated. The class of P-matrices (diagonal) satisfying this model will be 
defined. We select the following procedures. The unknown Ag*-values will 
only be computed for m selected nadir points. The diagonal elements for 
these points will be dominating and we make use of a partitioning of the 
A-matrix. 

n > m rank A= m (5.3:8) 

where a is a (mxm) matrix of the observations with shortest distance to the 
embedded sphere and b is a ((n-m), m) matrix for the remaining observations. 
The stochastic expectation for the observation errors is defined by the 
relation (n>m) 

p-1 = E{u 1 } (5.3:9) 

where 

pi i = ... for i = 1, 2, 3, . .. ' m 

P1 i = 1 for i = m+l, m+2, ... ' n 

This stochastic model gives a unique solution for a non-singular a-matrix. 
Without forming any normal equation we obtain the wanted solution from 

(5.3:10) 

This system has an "optimal" condition number which is approximately the 
square root of the best possible · condition number of a traditional least 
squares system. See eq. (5.3:6). 

The standard deviation from this approach is given by 

s 2 = (Ag - AAg*) 1P(Ag - AAg*)/(n- m) (5.3: 11) 

where s 2 is the variance of an observation with weight 1. This is not the 
minimum variance according to the traditional definition. However numerical 
applications will mostly confirm that this variance is fully competitive with the 
classical approach. 

This stochastic model lends itself to the following evaluation 

Villirn 

and we have taken care of the singularities at the m primary points. 

We have restricted the impulses to the set of observations with the 
shortest distance to the nadir points on the embedded sphere. 

The actual• least 
symmetric normal 

squares 
equations. 

solution 
This 

is obtained 
means that 
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directly available from an iterative solution of (5,3:10). This kind of 
solution is obtained with a condition number which is the square root of 
the condition number for the symmetric approach (approximately). The 
symmetric approach will often have condition numbers of 1,000,000 or more. 
This new condition number (limiting value) is smaller than for any 
alternative stochastic model with the same unknowns and is here called 
optimal. 

2. The technique is equally valid for the Krarup-Moritz approach as well as 
the Dirac approach. Standard deviations can be computed for any 
estimated quantities. (Predictions should normally be restricted to the 
surface enclosed by the smallest polygon enclosing all the given 
observation points.) 

For an arbitrary estimation of U(lxl) as a linear function f(lxm) of Ag* 

we compute an auxilliary vector f* defined by 

af* = f 

Then we obtain 

Degress of freedom= n - m 

(5.3:12) 

(5.3:13) 

(5.3:14) 

We note that this approach differs considerably from the traditional 
Gauss-Markov model which of course never was designed for solving 
discretized integral equations. However, models with good condition numbers 
can of course be well suited for a direct application of the Gauss-Markov 
technique. Our technique is mainly of interest for a discrete solution of a 
strict integral equation. The rounding errors are most conveniently taken 
care of by using good condition numbers. If observation errors are involved, 
then the situation is more complex but this approach has still important 
merits. An estimation of the variance from eq, (5,3:11) is slightly more 
pessimistic than the traditional least squares estimate. 

Slight modifications of this technique might sometimes be justified, The 
gain in condition number is so large that the choice of utmost condition 
number can be replaced by a more modest approach. We can for example 
refrain from using the shortest distance to the embedded sphere when 
selecting the unknowns. 

The application to the methods of Krarup and Moritz is straightforward 
and we simply have to select a set of observations which is split into two 
subsets. The primary subset is used for the collocation solution. The 
remaining subset is used for computation of variances. 
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5.4 Optimal radius of the embedded sphere 

Our previous presentation mainly treated the "static" problem when 
prediction of gravity, disturbance potential and vertical deflection should be 
made for a fixed radius of the embedded sphere. If the radius of the 
embedded sphere has a major impact on the predictions, then we have an 
improperly posed problem. Mostly very large systems of equations are used 
and therefore only iterative solutions will be considered in this first study, A 
sufficient condition for iterative convergence is 

2A • • > I Aj 1 J J i 
(5.4:1) 

This condition is normally satisfied for 

(rj -r0 ) < L/2 
max 

(5.4:2) 

where L is the minimum grid distance between two adjacent observations. Cf 
Bjerhammar (1969), Sj8berg ( 1978) and Katsambalos (1981), For local models, 
up to ten times larger depths of the embedded sphere have given useful 
iterative convergence and the predictions have been optimal with respect to a 
residual test field. See also Cruz (1985), 

The optimal choice of the radius of the embedded sphere can be given an 
analytical interpretation in the following way. 

Let n be the number of observations and m the number of unknown nadir 
points, The variance s 2 (of unit weight) is computed for three different 
depths of the embedded sphere when using a set of overdeterminations. We 
express the variance by a polynomial with three unknowns x01 x 11 and x 2 

If there is a minimum then this should be obtained for 

where r0 is the optimal radius of the embedded sphere, 

Three different radii are now selected: 

(r0 -h), r 0 and (r0 +h) 

with the variances 

sf, sL and s~ 

Then there is a simple expression for the optimal radius r 0 

ro = ro + (s~-sf)h/(4sj-2sf-2s~) 
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There are some practical problems with the application of this formula. If 
the separation between the three radii is too small, then no useful results can 
be expected. An extension to higher order polynomials is mostly of no obvious 
advantage, If a fourth variance sj is available, for the radius r 0 +2h, then 
two different r~ can be computed, and the arithmetic mean can be selected. 

Numerical example 

r 0 =10km S1 = 1.14 

ro = 20 S2 = 0.98 

ro = 30 S3 = 1.43 

ro = 20 (1.43 2 -1.14 2 )·10/(4·0.982 -2·1.142 -2·1.43 2 ) 

ro = 17.4 km 

The data are from section 21. The grid distance (L) was 9 km, The test 
area included mountains of heights up to 3000 m. RMS errors of a residual 
field were used for the computation of s 2 -values. From eq. (4.5:2) is 
obtained 

This approach corresponds to a "safe depth" of 1.5 km. However, the 
system had an iterative convergence down to a depth of 40 km and the 
optimal depth was 17 .4 km, Cruz (1985) concluded that the optimal result was 
at a depth of 10 km (when using fewer observations), 

For the least squares collocation, there is mostly a preprocessing where a 
suitable covariance function is determined. See section 10. We have instead 
to choose an appropriate radius of the embedded sphere. Local models have 
given satisfactory iterative convergence for much larger depths than defined 
by our "sufficient condition" for convergence. Therefore, it seems advisable 
to make use of at least two different radii when "defining" the model, The 
radius according to eq. (5.4:2) and another radius with at least twice the 
depth should be a useful alternative, Then we simply choose the solution 
with smallest variance of the residual field. 

Our preceeding study has shown how the optimal radius of the embedded 
sphere can be computed from a set of three computations of the residual 
variances. This kind of approach is an iterative least squares technique, 
which operates with constraints. The selected constraints will give zero 
variance for all observations with a Dirac point, This somewhat artificial 
weight selection is exclusively founded on considerations concerning the 
condition number of the system of equations, Furthermore, it benefits from 
extensive use of iterative techniques, which are mostly required for large 
systems, Finally, we note that the applied technique makes use of all 
derivatives involved and not only the first derivative, mostly used in 
traditional least squares techniques, The solution benefits from evenly 
distributed overdeterminations. 
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6. Renormalization and inversion-free techniques 

The following approach is of main interest for global applications of 
collocation techniques. We start off from eq. (4:1) which is written (with the 
two lower degrees included) 

[tl:tl] JJ ~ da (6:1) 
a 

d 2 = 1 + tj - 2tjcos~ 

It is easily verified that 

l-t
2 JJ 1 ~ d3 da = 1 (6:2) 

(1 

Clearly, we can rewrite eq. (6:1) 

tj-tj JJ !a:! 
4'1'T d3 da 

1-tj JJ 1 
41T d3 da 

"renormalized integral equation" (6:3) 

We obtain for an equal area approach (Aa 1 = Aaj Vi, j) 

t:, L Agf 

lim 
J i d!i 

Agj ::. 
i ➔m 

~ d}i 

(6:4) 

Thus, we can replace our discrete Poisson kernel of eq. (4:3) by 

Bjerhammar (1970), (1985) (6:5) 

This "renormalization" gives predictions on the external surface which are 
nearly invariant with respect to the choice of the radius of the embedded 
sphere. 

The most remarkable property of this new kernel is that it defines 
meaningful predictions between the given points also for a case when t : 1. 
The original Poisson kernel gives here an expression 0/0 and a limiting value 
Ag* = 0 for a spherical external surface. 

When using surface elements of arbitrary size (Aa 1 ), we can replace eq. 
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(6:5) by 

(6:6) 

where 

P = Acri 
i 4n 

Tho surface element Acri should normally be restricted to "well-shaped" 
figures (for example quadrangles). 

It should be noted that all predictions outside the external surface must 
include the surface elements from the whole sphere, giving for the 
denominator 

L Pi= l 
i 

If there are no observations on some of the surface elements, then they 
should still contribute to the denominator. The solution will otherwise be 
biased. 

Eq. (6:4) and (6:7) can be used for forming the discrete prediction 

t:J \ AgfAcri 
JL d~-

1 J 1 
renormalized 

This formula will allow prediction of gravity anomalies outside the given 
external surface. 

The corresponding discrete original Poisson formula gives 

(6:7) 

(6:8) 

When using surface elements of size 1 °xl •, then the renormalized 
prediction gives up to 10,000 smaller prediction errors than the original one. 
Both formulas benefit from the use of smaller surface elements. 

A discrete application of the original Poisson formula with integration for 
the "diagonal elements" is a useful alternative in some cases 
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(6:9) 

where !J.u j is a spherical cap on the unit sphere u. 

Eq. (6:7) rewritten 

t.2[/J.gft,.~J + L t,.gf!J.uj l J djj i(=j) djl 3 

t,.gj ::: (6:10) 

d~:~ +L ~ dJ; 3 

i(=j) 

or 

t-2[t,.gJ + ~ L t,.gf!J.uj ]. 
J /J.uj i(=j) dj; 3 

/J.gj = (6: 11) 

l + ~ L ~ bj dji 3 

i(=j) 

Let us consider a case with an approximately spherical external surface 
and finite surface elements where 

Then we obtain for an equal area approach, where /J.gj is given on the external 
surface 

(robust approach) (6:12) 

and any omitted element will be at least 1000 times smaller than the diagonal 
element (for an equal area approach), 

This means that we have an extremely simple inverse for quite realistic 
cases when using 

The inverse elements are then for Ajj > 1000 Ajl (V j = i) 

(A- 1 )jj = t] 2 and (A]l) = 0 V i=j (robust approach) 

(6:13) 

(6:14) 

The validity of this simple inverse has been checked on a global gravity 
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field 1 °xl • (equal angular difference) of maximum degree and order 180. The 
observations were given as point values in the middle of each surface element 
of an ellipsoid with the radius of the embedded sphere identical with the 
semiminor axis of the ellipsoid. There were altogether 64800 surface elements. 
The flattening was about 1:298.31. The inverse properties were checked by 
the recomputation of given points at the surface of the ellipsoid. The RMS 
prediction error was :t 0.2 mgal. 

The robust approach lends itself to the following simple inversion free 
technique for harmonic embedding. 

1. Observed gravity anomalies are downward continued by the transformation 

(6:15) 

2. For any prediction of the gravity anomaly on the external surface, we 
compute first the corresponding gravity anomaly on the embedded sphere, 

Prediction of Ag* between the nadir points of the observations is 
conveniently made by the use of eq. (6:7) with t = 1 for non-equidistant 
observations. 

Pt else 

Pi 0 

where 'i' increases with the distance to the prediction point. 
estimators are found in section 13. 

(6:16) 

Consistent 

If we consider step 1 valid, then we can hardly justify including all 
points, when predicting a new Ag*-value on the embedded sphere. We only 
use the actual observation when going down. Therefore, it is not justified to 
include all observations when densifying (interpolating) on the embedded 
sphere. The correct procedure must be to use exclusively the points in the 
immediate vicinity of the prediction point. 

If we have equidistant observations, then section 13 gives some 
interesting alternatives. 

3. Predictions on the external surface can now be made by 

(on the external surface) (6:17) 

This technique should normally be restricted to predictions on the 
external surface. 

Note: If all observations are used in eq. (6:16) or (6:17), then the 
procedure is no longer consistent and we simply increase the number of 
computations at the cost of the accuracy of the prediction on the external 
surface. 
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Mostly, step 3 is not needed other than to check the validity of the 
technique. 

4. Prediction outside the external surface requires (in a rigorous afplication 
of the renormalized approach) an infinitesimal densification of Ag on the 
embedded sphere. This is obvious because we have not made use of any Dirac 
technique. 

However, we can instead make use of renormalized formulas for the 
prediction of geoidal heights as well as vertical deflections. Unfortunately, 
the kernels are not all over positive. Therefore, only approximations of the 
kernels can be used for the renormalization. In order to overcome this 
deficiency, we can select a modest densification, which for example, reduces 
the average distance between points on the embedded sphere to half, 

This densified network on the embedded sphere can then be used for the 
following predictions: 

5. Gravity anomalies in space. 

6. 

Predictor: Poisson's formula eq. (6:9) or eq. (6.7) above. 

Geoidal heights on the external surface and in space. 
Predictor: Generalized Stokes' formula with integration 
spherical cap at the inner zone. Renormalized approach: 
(6:19). 

over a 
See eq. 

7. Vertical deflections on the external surface and in space. 
Predictor: Generalized Vening-Meinesz formula with integration over a 
spherical cap at the inner zone. Renormalized approach: See eq. 
(6:21). 

Svensson ( 1981) generalized the renormalized approach, and included the 
formulas of Stokes and Vening-Meinesz. 

roL S(c.,) j i Agf Pt 
1 i 

Nj = 
')' j L 1 

41r 
dji Pt 

where 

(l/41r)f f d--i de1 = 1 
<1 

Thus 

r o L Agf S ( "') j i Pi 
i 

ffd- 1 d<1 
<1 

(6: 18) 

See Svensson (1981) (6:19) 
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where S(c.,) is the generalized Stokes formula. This procedure is competetive a 
traditional integration, This is most clearly seen when using large surface 
elements. We note that the renormalization was made with the kernel d- 1 

which avoids the singularity that should have been found for the original 
Stokes' function when it goes to zero. If no renormalization is used, the 
integration can be made in conformity with eq. (6:9), for a small cap Aa J 

!:..2 JJ S(c.,) AgJ da + ro ~ S(w)ji Agf 
47T Aa. t j 

J 

(6:20) 

The corresponding renormalized predictor of the vertical deflection will be 

(6:21) 

where 

JJd- 2 da = 
27T l+t 
t log 1-t See Svensson (1981) 

(1 

If no renormalization is used, we make integrations in conformity with eq. 
(6:9). 

Here V(c.,) is the generalized Vening Meinesz formula. There is a 
singularity for t =l, but this is avoided in the numerical application by proper 
choice of depth to the embedded sphere. 

The densification of the Ag*-field can be somewhat limited when using the 
formulas (6:19) and (6:21). 

The inversion-free technique described above is mostly of interest for 
global applications. If the densified Ag*-field gives significant residuals when 
predicting the given observation, then an iteration technique can be used. 

When using the Jacobi iterative approach, we obtain the first iterative 
step 

(6:22) 

where 

else HJ i = o 

If more iterations are needed, then the alternative with Dirac technique 
might be more justified. 

Smoothing is most easily obtained in the renormalized approach when 
redefining 
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O<c<l 

The renormalized approach leads to exceptional timesaving in a global approach 
with grids as l0°xl0° or 5°x5° and small depths to the embedded sphere. See 
Bjerhammar (1970}, (1985} and Svensson (1981}. See also Katsambalos (1980} 
and Sllnkel (1981b}. 

Standard deviations of the robust approach can be estimated by eq. (13:2), 

The main difference between the Dirac approach and the renormalized 
approach is that the gravity is strictly equal to zero between nadir points in 
the Dirac approach but not for the renormalized approach. However, the 
robust predictors give useful predictions, from selected values of the 
continuous gravity anomaly on the embedded sphere. The predictions on the 
given surface and in space mostly require a previous densification of the 
gravity anomaly on the embedded sphere. 

An 5°x5° equiangular network can be m:1ed with an embedded sphere of 
radius equal to the semiminor axis of the ellipsoid, The simple t- 2 Ag solution 
is obtained by the use of only 2592 inversions of scalars. The corresponding 
complete solution in a Dirac approach with matrix inversions requires about 
5.8xl0 9 multiplications. An iterative solution is expected to give considerable 
reduction of the number of necessary operations. However, it will still be 
rt1ther lime consuming. 

Studies of traditional collocation techniques made so far indicate that the 
renormalized approach is fully competitive with respect lo accuracy for global 
applications. 

Local applications of the renormalized approach can be questioned, because 
of the existence of large unsurveyed areas. 

Concluding remarks. The robust approach is an inversion-free technique, 
which can be applied directly to data from the continuous gravity anomaly of 
the embedded sphere. The robust approach can be used as a first step in an 
iterative approach. However, if iterations are needed, then a Dirac approach 
is an interesting alternative. 
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Fig. 5. 

GEODETIC BOUNDARY 

... o""' NI 

\ 

V ALU! PROBLE.11 

A set of discrete gravity anomalies '1g is given on the topographical 
surface. A corr~sponding set of discrete gravity anomalies .1g* is 
computed on the embedded sphere. The gravity anomaly varies 
continuously between these .1g*-values. "Renormalized approach". 
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6.1 Renormalization as an alternative to spherical harmonic expansion 

The renormalized approach has some properties, which might justify 
alternative applications. 

The most challenging approach is perhaps the following one. 

L Gravity anomalies are given at the surface of the earth in an equal 
area or equiangular approach. 

2. ag*-values are computed by the robust approach for all given surface 
elements, when using the embedded sphere of radius equal to the 
semiminor axis. 

3. Geoidal heights are computed for the external surface. 

4. Gravity anomalies are computed for the external surface. 

Gruvity anomalies, gravity disturbances, geoidal heights and vertical 
deflections are computed anywhere on the surface of the earth and in space 
with very simple formulas. The upward continuation can be made with 
traditional integral formulas or the renormalized formulas. 

The simplicity of this technique is rather obvious. 

All data of the data bank have an immediate physical meaning. 

The classical spherical harmonic coefficients are very hard to interpret. 
Conflicting results are obtained from independent solutions of higher order. 
This dilemma will be more obvious when increasing the number of 
observations. The spherical harmonic expansion is unable to recover the 
highest harmonics of the gravity field. The final so]ution therefore has to 
include a secondary step which takes care of the residuals with discrete 
techniques. If the spherical harmonic.: expansion is made for a bounding 
sphere, then it still remains to reduce the results down to the physical 
surface. If the spherical harmonic expansion is given for an embedded 
sphere, then the higher harmonics will be very uncertain (dT :t: 0). 

There is little doubt that the spherical harmonic solutions will still be of 
major interest for a number of applications. Probably satellite solutions will 
be given by a spherical harmonic approach. However, for geophysical studies, 
much higher frequencies are needed. Therefore there seems to be some 
justification for the suggested model. 

Many will probably prefer a presentation related to the ellipsoid. This 
should not be a problem if we select a presentation by the use of single layer 
technique. 

Finally, there will always be an interest in having the real data for the 
external surface, but this data set needs no specific justification. 
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This renormalized presentation of the global gravity field offers the 
scientific community outside geodesy an easy access to important geodetic 
information. Some of the tentative conclusions can be mentioned. 

1. Discrete gravity anomalies from the continuous field of an embedded 
sphere are used directly in inversion free predictors for the prediction of 
the disturbance potential and all its derivatives. 

2, The robust approach will be useful for surface elements as small as 
1 "x] •, directly available for improved local solutions. 

3. The consistency of the technique is easily verified at the given points 
on the external surface. 

4. The difference between the actual field and the robust solution is 
directly available for improved local solutions. 

5. No artificial masses are used for the presentaion. 

The robust approach benefits from the same simple structure as the Dirac 
approach without requiring the solution of large systems of equations, It can 
be claimed that the robust approach gives a restoration of the classical 
techniques, slightly modified for global applications. Further studies might be 
of interest. 

Example of robust prediction: 
Gravity field: Degree and order up to 180 by Rapp. 
Given gravity data: 72 consecutive gravity anomalies at the latitude 62.5° on 
the ellipsoid with]" spacing: l", 2•, ... 72°. 
Prediction problem: Use four consecutive observations with 2" spacing for the 
prediction of the point in the middle (on the ellipsoid). 
Radius of the embedded sphere: Semiminor axis of the ellipsoid. 
Predictor from the ellipsoid to the sphere: Eq. (6:15). 
Predictor on the sphere: Weighted means (see eq. 13:5) 

p(l)=p(2)=1 for the two closest observations 
p(l)=p(2)=-l/9 for the two most distant observations. 

Predictor from the sphere to the ellipsoid: Eq. (6:17). 
Longitude True Prediction Prediction error 

1• 10.85 mgal 
2 3.96 
3 -2.79 
4 -7. 75 
5 -9.50 
6 -7.51 
7 -2.43 
8 4.00 
9 9.53 

10 12. 21 

72 16.58 

-7.44mgal 
-9.08 
-7 .13 
-2.25 

0.31 mgal 
0.42 
0.38 
0.18 

RMS prediction error (66 predictions) lat. 62.5° ~0.23 mgal 
RMS prediction error (66 predictions) lat. 87.5° ~0.037 mgal 
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7. A spherical harmonic solution for the embedded sphere 

A spherical harmonic expansion of the potential V can be made for a 
spherical surface, See Heiskanen-Moritz (1967). 

(7: l) 

where G is the gravitational co~stant, M mass of the earth, P0m(sin♦) Legendre 
ial of degree n and order m, ♦ geocentric latitude, A longitude, r 0 radius of 
the sphere and r j geocentric distance of the actual point. Finally C0 m and 
Snm are the coefficients of the spherical harmonic expansion. Different kinds 
of normalization can be used in combination with the spherical harmonic 
expansion. 

We use our previous spherical approximation of the boundary valuet:i 

iJT + 2T -Ag 
ar r 

and obtain for r 0 6 b, where bis the semiminor a.xis of the reference 
ellipsoid ,.. 

m n 

Agj =- ~~ L L(n-1) (~) n (C 0 mCOSmA + S0 msinmA.) P0m(sin♦) 
J n=2 m;;::0 j 

(7:2) 

(7:3) 

The coefficients of eq. (7:3) can be determined from a system of linear 
equations, where the gravity anomalies are given on a non-spherical external 
surface. If the gravity anomalies have been reduced down to an embedded 
sphere, we can make use of 

(7:3a) 

where -, = GM/a 2 is valid for a bounding sphere with M as the mass of the 
earth. 

This approach postulates infinitesimal surface elements. 

Pellinen (1966) introduced a smoothing parameter /Jn which for a case with 
a circular cap Ila of radius c., 0 can be defined by 
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/Jn ::: cos[~) 
Pg1COSW0 
n(n+l) 

with 
n 

{ Cnm } 4n (!-l)fJ ~ 4gf ff Pnm(sin+){ 
cosmA } da Snm 

·-
sinillA ~ n 1~1 4a 1 

where Agf is the mean anomaly on the surface element 4a 1 • For further details 
see Rapp (1980). 

If we have observations on an external _non-spherical surface, we can make 
use of an extension of the previous discrete technique and obtain a system of 
linear equations. 

AX* "' Y (7:4) 

where A is a matrix with elements from equation (7:1) and (7:2), x* is a matrix 
with all unknown harmonic coefficients for the selected embedded sphere. 
Finally, Y is the vector of the observations 

T == N·~ (7:5) 

where N is the vector of observed geoidal heights and Ag the vector of 
observed gravity anomalies. The observations are overlapping. 

The solution should be non-singular if the number of unknowns is equal 
to the number of observations, The solution gives Ag* as well as N*. There 
are some practical problems with this kind of approach, because the solutions 
will be rather complex when the number of unknowns increase. 

However, there is a possibility of obtaining the same kind of solution by 
using so called fast Fourier transforms (FFT). These solutions are 
exceptionally time saving but are only directly applicable for strictly spherical 
surfaces. We note that the FFT technique normally requires that the 
observations are given for surface elements which have equal latitude and 
longitude spacing. (For the FFT-technique, see Colombo 1981.) 

We can make use of an iterative FFT-technique where an embedded sphere 
is used for the spherical harmonic expansion in the first step. The embedded 
sphere is given the same radius as the minor semiaxis of the reference 
ellipsoid (or slightly smaller). 

The gravity anomalies are mostly given on the external surface at 
distances far away from the ellipsoid and will therefore require reduction. We 
will here use the simple approach. (See eq. 6:12.) 
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(7:6) 

For the oceans, we use any of the data sets available from altimetric 
observations for a calculation of approximate 4g-values. See section 19. 
These 4g-values are reduced according to eq. (7:6). 

The given gravity anomalies 4gl 1 ) are used for the computation of a 
primary set of harmonic coefficients (FFT technique) 

(7:7) 

This solution is used for a recomputation of all observed y-values and we 
obtain the residuals 

(7:8) 

The residuals are then used in a second FFT-operation 

(7:9) 

Then we obtain the new improved solution 

(7:10) 

The convergence of this iterative approach will be dependent on the depth 
to the embedded sphere. The kind of grid system we postulate here looks 
venturesome because the size of the surface elements varies considerably with 
the latitude. However, we will make such a selection of the radius of the 
embedded sphere that will give us an optimal convergence for the given 
ellipticity. 

If the large axis of the ellipsoid is a and the smalJ axis is b, then we are 
free to choose any 

The natural choice will be to select an r 0 where the surface elements 4S 
satisfy the condition 

"constant (7:11) 

In this way, we will be able to benefit from the ttinconvenient surface 
elements" of the FFT-technique when matching them against the change in 
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depth from the ellipsoid to the embedded sphere. 

The validity of the free boundary value problem is somewhat controversial 
for a non-spherical external surface. It is therefore important to make use of 
a verification of the results. A fixed boundary value approach will be used. 

The natural procedure will be to introduce a new parameter the "gravity 
disturbance" !g defined by 

!gj = gj - 'Yj (7:12} 

Our previous analysis has given us the "geoidal separation", which makes it 
possible to compute 

Cf. section 16 for the fixed boundary value problem. Compute the gravity 
disturbance 

m n 

!g = ~~ LL (n+l} (~)" (C0 mcosm). + S 0msinm>.)P0m(sin♦} 
-J n=2 m=O J 

!:j = rj + N j 

The following conditions should now be satisfied 

!:I. N• 
ilr J 

(7:14} 

(7:15} 

Traditional solutions have normally made use of a spherical harmonic 
expansion for a sphere with radius r 0 :a, There is an exact conversion of our 
solution to this radius. See also section 15. 

See also Freeden (1985), Hajela (1977), Rapp (1977), (1978), (1978a), (1979), 
(1980), ( 1981a), ( 1981 b), and (1985). 

This presentation gives a technique that in a consistent way takes care of 
observations on a non-spherical external surface when using a spherical 
harmonic expansion. 

The discrete impulse technique (Dirac approach) has frequently been 
applied with very good results for the local solutions of the free boundary 
value problem. The spherical harmonic expansion looks provocative because 
we pretend to solve a mixed boundary value problem for a non-spherical 
earth. Studies by Holota (1981) and Svenson (1982a) indicate that the mixed 
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bounda.ry value problem should not be solvable in the traditional way. See 
section 15 for further details. However, their approach is not considering the 
discrete case when using an embedded sphere. The author is of the opinion 
that the embedded sphere approach avoids the singularity problem otherwise 
relevant especially since we postulate for the limiting case that gravity 
anomalies and geoidal heights are overlapping. It furthermore gives exact 
compensation for a non-spherical (ellipsoidal} reference ellipsoid. The 
embedded sphere approach also overcomes the problem with an ellipsoidal 
reference surface without using ellipsoidal harmonics. In a more rigorous 
approach, we can use more precise boundary conditions of section 8. 

It should be noted that the reduction down to an embedded sphere is an 
improperly posed problem, which requires identical techniques when going 
down and up in order to secure meaningful results on the external surface. 
Therefore spherical harmonic expansions for a non-spherical external surface 
requires an iterative use of the embedded sphere. Classical gravity 
reductions can give rather misleading results in combination with a spherical 
harmonic expansion. They will only be useful in a first iterative step. The 
validity of a solution has to be verified by an expansion up to the given 
points. 

Pellinen (1982) used an elegant technique for a spherical harmonic 
expansion which eliminates the ellipticity error from the reference surface. A 
spherical harmonic expansion is normally used in so called combined solutions. 
See section 14. 

We can avoid our large reduction distances down to an embedded sphere 
of radius equal to the semi-minor axis, when using "Pellinen corrected" 
spherical harmonics for the computation of residual gravity anomalieR at a 
local cap in a discrete approach. Our system of equations will then only 
include a small number of unknowns which take care of the gravity reduction 
for the local topography. We can then use an embedded sphere of the same 
radius as the geocentric distance of the reference ellipsoid at the actual area. 
This approach should be rather attractive with respect to accuracy as well as 
simplicity. 
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8. The boundary condition on an ellipsoidal reference surface 

The spherical approximation of the boundary condition gives a simple 
derivation of Stokes' formula. The equivalent expression on an ellipsoidal 
reference surface is given by Dermanis (1984) (revised version) 

(8: l) 

r p N (f*+f) 'Ye 
a 1 

N aL/b f (a-b)/a 

M - V/ab f* :::. (7po1e 7equator)/7equator 

J a4 sin 2~ I, ·.: r(ab) l + b 4 cos 2 ♦ 
2 -- (a2 - b2);a2 e 

Furthermore, 7 is theoretical gravity 1 ♦ latitude, ♦ geocentric latitude, r 
geocentric distance and G.) angular velocity of the earth, a semi-major axis and 
b semi-minor axis of the ellipsoid. We introduce the notations 

A {~ + l + 
2c.,2 p 2 r4 sin 2 2♦) z (~ + il -- + 

N 1 a 2 b 2M 

B "' ~(;: 
r3 pe2 s~n 2 2♦] z a2 
b3 Nr 

Equation (8:1) is now rewritten (see also Bode and Grafarend 1981). 

iJT 
iJr 

2T ::: Ag + T(A - .?.) + iJT (B ·- 1) + ~ (p+ ~
2 

!!)sin2i ~! :: 
r r iJr bN 2 b a~ 

(8:2) 

The ellipsoidal corrections of the right member will be zero for a=b. The 
corrections will be on the 'order of a few milligals for the traditional geodetic 
reference ellipsoid. Rapp (private communication) found 1:Q,06 mgals RMS when 
using a spherical harmonic expansion up to degree 250. The right member is 
partly unknown. However, approximate values should be obtainable with 
satisfactory accuracy from present expansions in spherical harmonics. 
Analytical continuation down to the embedded sphere gives the linear matrix 
equation 
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where 

= Ag + T(A .,. ~1 + aT (B ·- 1) 
r ar (8:4) 

When Ag*-values have been obtained, then two options are availab]e: 

1. A direct application gives the disturbance potential and its derivatives 
on (and outside) the physical surface when the upward continuation is 
made by the use of the inverse procedure of the downward continuation. 

2. A spherical harmonic: expansion is made for the selected sphere of 
radius r 0 • This approach will benefit from an application of Fast 1',ourier 
Transforms FF1'. The initia] technique is already described in section 7. 

The validity of this approach will be questionable because we use 
different techniques for downward and upward continuation. The results 
will then be rather misleading for higher harmonics. 

Our solutions of the boundary value problems have mostly been made by 
spherical resolvents (see Stokes' formula). This means that we have to make 
use of an embedded sphere of a radius not larger than the smniminor axis of 
the ellipsoid. This approach makes it possible to give a joint solution, 
considering topography as well as the el1ipticity of the reference gravity field. 
The solution is formally rigorous. Large depths to the embedded sphere will 
increase the computationa] work for dense grids of observations. 

A few alternative techniques will be mentioned below. 

The buried _muss __ technique utilizes no spherical formulas and is therefore 
of special interest in a discussion of the ellipticity errors. See section 5.4. 
Studies of local models have shown that the technique is fully equivalent to 
the Dirac approach on gravity anomalies. The global application is slightly 
more questionable. There is a risk that the gravity center has been displaced 
when using this technique without additional constraints. This means that the 
angular momentum can a]so be changed. However, it should be fully justified 
to use this technique as a primary step and then verify the misclosure with 
respect to mass and angular momentum. The final solutions have then to be 
corrected accordingly. Cf Vermeer (1984). 

Another straightforward technique is to make use of Lame-functions 
instead of spherical harmonics in order to obtain the resolvent for an 
ellipsoid. Zagrebin (1956), Bjerhammar (1962), and Molodenskii (1962) studied 
this problem. Present investigations indicate that• the maximum errors of the 
Stokes' resolvent. are in the order of 100 cm when applied to the gravity field 
of the earth. See also Moritz ( 1980), Rapp (198 la), and Cruz ( 1985) for newer 
investigations. 
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Moritz (1980) gave the following corrected Stokes' formula. 

(8:5) 

where NE is the geoidal height, N is the approximate value of the geoidal 
height, Ag' a corrected gravity anomaly, R the mean radius of the earth, 7 the 
theoretical gravity on the ellipsoid and e the flattening of the ellipsoid. 

• X nm 

m n 
t t 

n=o m=o 

= -3(n- 3) (n· ·rn--1) (n-rn) 
2(2n-3)(2n-l) 

n3 -3m 2 n- 9n 2 -6m2 -10n+9 
3 ( 2n+3) ( 2n-- l) 

= - (3n+5)(n+rn+2)(n+rn~1) 
2(2n+5)(2n+3) 

(8:6) 

(8:7) 

(8:8) 

(8:9) 

The geoidal height on the ellipsoid can be computed by the use of a 
spherical harmonic expansion according to Rapp (1981) eq. 37 (slightly 
modified). 

m n 

~~ (r:)nCCnmcosm~ + Snmsinm~)Pnm(sin,) (8: 10) 

where rE is the geocentric distance of the actual point on the ellipsoid. 

The spherical harmonic coefficients of eq. (8:10) are related to the 
semimajor axis of the reference ellipsoid. 

The solution makes use of (a/rE )-values larger than 1. This approach will 
require a previous determination of Cnm and Snm values from gravity 
anomalies, There are some difficulties involved with such determinations. 

The derivations of eq, (8:5) were made prior to the derivation of the 
gravity anomalies of Dermanis (1985), 
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9. A symmetric kernel (Maximal smoothness) 

Krarup (1969} used an infinite-dimensional Hlbert space approach which 
results in a symmetric kernel. 

The solution of Moritz (1972} is slightly modified and has a simple 
equivalence in the Euclidean space. 

For each discrete observation we introduce an impulse b.gx at the 
geocentric distance r 0 (on the radius vector to the actual observation) 

(9:1) 

where r I is the geocentric distance of the actual observation and re the 
radius of an embedded sphere. 

For the approach we use 

Ag = AAgx 

where 
a, 

= (t 2 - t 4 )dJf = L(2n+l)tn+ 2 P0 (cosc.i) 
n=o 

dji = 1 + t 2 
- 2tcosc.iji 

t rVrJr1 

(9:2) 

(9:3) 

S1ightly more complicated formulas are needed when starting from n = 2, 

We have here located our unknown "impulses" b.gx at positions inversely 
proportional to the geocentric distances (Cf. Bjerhammar (1975): Reflexive 
prediction) 

ro ri/r 1 

All our previous formulas of section 4 will now be directly applicable. For 
example we have the following predictions for a point at the geocentric 
distance r q• 

Gravity anomalies: Agq = (tq tq) r b.gf d-3 where tq = rifrqri (9:4) 
i 

qi 

Disturbance potentials: T = ro L S(c.i)qi Agf q 
I 

Vertical deflections: Cf. eq. (4:8) and (4:9). 

This solution in Euclidean space is equivalent to the Hilbert space solution 
of Moritz (1972) who minimized the L 2 -norm of the gravity anomaly on the 
embedded sphere of the radius re, Each observation b.gf has an unknown 

impulse Agf at the geocentric distance rUr i (in our interpretation). See fig. 
6. 
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(9:5) 

Moritz (1972) mostly considered weighted L 2 -norm solution, presented with 
the technique of stochastic processes. See section 10. This technique should 
leave the gravity center and angular momentum unchanged. 

Our integral equation (2:4) is of course only valid for a fixed value of r 0 • 

However, we can use an infinite number of concentric spheres, which all give 
an individual solution of our discrete problem. We can also use any finite 
number of concentric spheres which together give a joint solution. For each 
individual sphere, we can choose to use a single unknown. This is the 
strategy we have chosen. 

Our solution with a set of concentric spheres has the following structure. 
Let T represent the disturbance potential. Ti is the disturbance potential 
generated by the i-th sphere. 

Spaces: 
Above spheres 1-n: 

Above spheres 1--3: 
Above spheres land 2: 
Above 1st sphere: 

Notations: 

AT 1 AT 2 = AT 3 = 0 
AT 1 = 0 and AT2 =O 
AT 1 = 0 

The sphere with a lower number has a shorter radius. 

In our original approach, we used a set of impulses on a joint sphere. We 
have now made an extension of our approach to impulses outside the original 
sphere. We call this technique "reflexive prediction". See Bjerhammar (1975). 

We can conclude, that in a multi-sphere approach, there will only be strict 
harmonicity outside the uppermost sphere. 

If the uppermost sphere does not intersect the physical surface, then no 
harmonics have been excluded and the Keldych-Lavrentieff theorem for 
uniform convergence has not been violated. 

The L 2 -norm solution is the "smoothest" solution for the selected radius 
r 8 of the embedded sphere. However, a Dirac solution with 

r 0 < r~/rj V j 
is still smoother. See Cruz (1985) and Lelgeman (1983) for further details. 
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Krarup (1969) used originally a different technique, where the Poisson 
integral equation is directly applied to the disturbance potential T 

t-t 3 JJ T* -:_rr;- d:, dCJ (9:6) 
(I 

We select instead our Dirac impulses Tx at the geocentric distances 
r 0 = rifr 1 in accordance with eq. (9:1). Then we obtain the matrix equation 

T = CTX 

where 

cji = (t-t 3 )d}f 

(aTJ. + 2TJ =_Ag 
ar J rj 

Krarup gave a solution which minimizes 

(f 

(9:7) 

(9:8) 

where T* is the disturbance potential on the embedded sphere of radius r 8 • 

For further details of this technique, see Krarup (1969), (1978), (1978a), 
Cruz (1985) p. 111, 112. 

We choose now a buried mass technique for our following presentation. 

The disturbance potential will be determined from a set of buried masses 
which are located at the geocentric distances r 0 • 

T J = Am>< 

Aji = 1/rji = 1/rJdJi 

dj1 = 1 + tj - 2tjcos~Ji 

tj = r 0 /rj = rft/rJri 

(symmetric A-matrix) 

(9:9) 

(9:10) 

(9:11) 

(9:12) 

where T is the disturbance potential and m* the vector of the unknown buried 
(point) masses (multiplied by the gravitational constant). 

For the gravity anomalies, we obtain 
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(9:13) 

Here we obtain a system of linear equations for the determination of all mf, 

The gravity disturbance at a point P q is given by 

(9:14) 

The vertical deflections are obtained by 

(9:15) 

Potentials are given by 

(9: 16) 

For these derivations we have used 

cos♦ sino< 

d~ 1 = 1 + t~ 

where ♦ is geocentric latitude and o< azimuth. (No rigorous 1 2 -norm.) 

See Brennecke and Lelgeman ( 1983) and section 5.4. 

For a comparison, we give the formulas for an L2 -norm minimization of the 
disturbance potential T* on the embedded sphere, 

(A is here an autocovariance matrix) (9:17) 

(9: 18) 

See Sj8berg (1975) p. 107 for eq, (9:18). See also appendix. The 
4gx-values impulses are located on the reflected topography. Predictions of 
4g are made with known 4gx-values in eq. (9:17), Cf fig. 6, 
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10. Wiener-Hopf Approach (Stochastic Process: Moritz (19'72)) * 
Moritz (1972) used the theory of stochastic processes, postu~ating that the 

expectation of the gravity anomaly is zero 

E(Ag) = 0 (10: I) 
,.. 

Predictions of gravity anomalies Ag and disturbance potentials Tare given 
by 

(10:2) 

(10:3) 

If specific conditions are satisfied, then the wanted expectations can be 
expressed as a covariance function, such as 

(10:4) 

where rp is the geocentric distance of the fixed point, rQ of the moving point 
and r 8 the radius of the embedded sphere, And 

"' 
E(TpAgQ) = rsL an(n-1) 1 t,(n+i)pn(coswpQ) 

n=2 

where an is the degree variance 

n 
GM (n-1) 2 L c~i + s~i D'n ::: 
a2 

i=l 

(10:5) 

(10:6) 

with Cn i and Sn i given as fully normalized spherical harmonic coefficients. 

There is an equivalence between the theory of stochastic processes and 
the Hilbert space approach which has been described by Parzen (1959). In 
this special case we use the theory of stochastic processes for solving a 
linear integral equation of first kind. 

Tscherning-Rapp (1974) presented an empirical formula for the degree 
variance (en) of gravity anomalies 

Cn = A(n-l)/(n+2)(n+B)) ( 10: 7) 

*) See also Goldberger (1962), and Liebelt (1967), 
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GEODETIC BOUNDARY as 
HILBERT SPACE APPROACH ; 
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Fig. 6. A set of discrete gravity anomalies is given on the topographical 
surface. Each observation point has an unknown impulse Agf on its own 
radius vector, at the geocentric distance rj/r 1, where r 8 is the radius of a 
common embedded sphere and r i is the geocentric distance of the actual point. 
This solution with discrete impulses is exactly equivalent to a solution 
minimizing J J(Ag*) 2 dS on the sphere of radius rs, This La-norm solution is 
"smoother" than any alternative solution using the same embedded sphere. 
The "norm-surface" will be found at the geocentric distance ..Jr 0 r i (This 
should also be approximately correct if the impulses are located outside the 
reflected topography. With all impulses on a common sphere, a more 
sophisticated L 2 -norm solution is expected on this non-spherical "rs-surface"). 
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where A and B are constants. (Mostly A = 425.28 mgal2 and B = 24), This 
formula has often been used in combination with t = 0.999617. 

A rigorous application of this approach postulates covariance stationarity, 
homogeneity, and isotropy. Mostly these conditions are violated and standard 
deviations are no longer estimable. However, the technique is of course still 
operational for any selected covariance function. 

Hypothetical variances and standard deviations can be computed by error 
propagation from the applied covariance function. However, the associated 
confidence intervals will be unlimited (infinite), because there are no degrees 
of freedom, 

Moritz has in later publications postulated 

E(Ag) = s (sis the signal) (10: 8) 

See also proof of non-ergodicity for a normal distribution by Lauritzen 
(1973). 

For further details see Moritz (1970a), (1971), (1972), (1973), (1974), 
(1974a), (1975), (1975a), (1976), (1976a), (1977), (1977a), (1977b), (1978), (1978a), 
(1978b), (1979), and (1980), 

See also Balmino (1978), Colombo (1981), Cruz (1985), Dermanis (1977), 
Forsberg and Tscherning (1981), Grafarend (1976), (1978), Koch (1977), Koch 
and Pope (1972), Lachapelle (1977), Lachapelle and Tscherning (1978), Lelgeman 
(1979), Rapp (1974), (1975), (1977), (1977b), (1978), (1978a), (1978b), (1980), 
(1981), (1981a), (1985), Rapp and Hajela (1979), Rummel (1975), (1976), Rummel 
and Rapp (1978), Rummel, Schwarz and Gerstl (1979), Sanso and Tscherning 
(1978), Schwarz (1974), (1975), (1975a), (1975b), (1976), (1976a), (1978), (1978a), 
Sj8berg (1975), (1978), (1978a), (1979), Stinkel (1978), (1979), (1981), (1981a), 
Tscherning (1973), (1973a), (1975), (1976), (1976a), (1976b), (1977), (1977a), 
(1977b), (1978), (1978a), (1978b), (1978c), (1985), Wolf (1977) and Zelinski (1975). 

A comparison between collocation according to Moritz and other methods is 
given by Katsambalos (1981). 

The techniques of Krarup (1969) and Moritz ( 1972) are pure collocations 
in the terminology of Collatz. However, these authors mostly use the 
terminlolgy least squares collocations for their techniques and this terminology 
has been generally accepted in geodesy. Minimum norm collocation is closer to 
conventional mathematical terminology, These two techniques will sometimes be 
denoted by l,s.c. 

Another alternative makes use of the complete information of the harmonic 
expansion for a rigorous non-stochastic solution of the boundary value 
problem. See section 14. 

58 



I I. Invariance with respect to the diagonal elements (smoothest principal 
diagonal) 

It seems justified to investigate an alternative technique, which postulates 
that the unknowns are located at positions, which should give constant value 
of the principal diagonal elements in order to obtain invariance with respect 
to the diagonal elements. We select a scalar a 

r 0 = ar 1 

0 < a < 1 

t - arifrJ 

For this approach we easily obtain from eq. (4:4) 

Aji = (r} 2rt 2 a 2 
- rj4 rt4 a 4 )(1 + r} 2 rt 2 a 2 - 2r} 1 r 1acos~)- 3 / 2 

Here we obtain the diagonal elements for rj=r 1 

(11: 1) 

(11:2) 

(11:3) 

(11:4) 

Clearly, we have found a solution for Ag*, which is invariant with respect 
to the diagonal elements~ This solution has its Dirac points opposed relative 
to the L2 -norm solution. It is therefore of special interest, 

For a spherical external surface, this solution is identical with our 
previous approach in section 4. The solution cannot be obtained as an 
Lrnorm solution because the kernel is asymmetric in the general case. 

A stochastic model according to Gauss-Markov can be used in combination 
with this technique, 

This kind of solution can be of interest when using rather dense networks 
of observations. The use of one single embedded sphere might result in 
unstable solutions because of the large depths at the equator. If we use the 
technique presented above, then we can expect stable solutions for rather 
dense networks. However, we cannot generally justify using any r 0 -values 
which are located outside the reference ellipsoid. 

This approach can be justified in the following way. We already know 
that an L2 -norm solution is obtained for the embedded sphere of radius r 8 if 
r 8 r 8 = rir 0 , For a smooth external topography, we expect good smoothness on 
the ( non-spherical) surface r 8 = r 1 .Jo! if the impulses are located according to 
eq, ( 1 I. 1), These solutions are obtained with improved numerical stability and 
the predictions were found with higher accuracy. Cf section 21 for results. 
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12. Maximal prediction error 

The gravity anomaly on a spherical external surface is given by a 
spherical harmonic expansion. 

(12:1) 

where G is the gravitational constant, M _mass of the earth, P0m(sin♦) Legendre 
polynomial of degree n and order m, ♦ geocentric latitude, A longitude, R 
radius of the sphere and Ag gravity anomaly. 

We will use N discrete observations for each parallel circle in an 
equiangular approach. The latitude difference will be equal to the longitude 
difference for the given observations. 

For all points given at the same latitude, we consider the case when 

m = n 

Let the gravity anomaly of the sectorial harmonic for this latitude, be 
given by 

U(rsin0, rcosR) ~ eim0 

cosm:X 

sinm:X 

_ l.(eimA + e-imA) 
2 

..J. (eimA - e-imA) 2i • 

(i sinm8 + cosm0) = Ag i = ✓-1' (12: 2) 

where r is the radius of the parallel circle, 6 the "geocentric" angle of the 
moving point, and m the degree of the polynom (r=l). 

Two different kinds of predictors will be studied. 

The first case will be the most simple "robust" interpolator where only the 
two closest points are included for a prediction on the parallel circle in 
question 

2 
(12: 3) 

L d~,3 
l Jl 
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The selected interpolator will have its maximal prediction error when the 
given points are located at equal distance from the peak value of the sine 
wave of degree m. 

Let the true maximum value be 1. 

The predicted value is cos(mn/N) (12:4) 

The maximal prediction error is 

cos(mn/N) (12: 5) 

We now consider a case, with an embedded circle of radius ro where an 
L2 -norm of Ag is minimized. 

The maximal prediction error is first determined when ignoring all 
observations outside the actual parallel circle. 

The Poisson formula for the one-dimensional case is in earlier notations 

J
+n 4cf* 

4g ~ (t - t 3

) -w ~ dB d 2 = 1 + t 2 

- 2tcos9 

We obtain the prediction ,1(x). Cf. Bjerhammar (1975), Sj8berg (1978). 

u(x) = (J:tljl eij8)/(rt1jl) i = ✓-1 (12: 6) 
j=m(mod N) j•m(mod N) 

(j - mis a multiple of N), 

t = r~/r 2 and lxl = r. 

where form< N 

L tljl = tm + t tm+kN + L tkN-m 
jEm(mod N) k>O k>o 

= (tm + tN-m)/(1 - tN) (12:7) 

According to eq. (12:6) we obtain the approximation (for large N-values) 

The error E of this expression is 

E = 1 

(12:9) 

If m > N, then the predictions are useless. 
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Tf N/2 > m > N, then the predictions are questionable with 

(12:10) 

For O < m < N/2 we obtain 

(12:11) 

V t < 1 (uniformly conve~gent) 

The renormalized approach can benefit from extremely small depths without 
loosing in accuracy. The l.s.c technique benefits from the combined effect of 
large depths and a large ♦-number. This means mostly a dramatic increase in 
the computational work. 

It should be noted that our ♦-value is not identical with the degrees of 
freedom in a stochastic model, We can increase the number of observations in 
our collocation techniques without introducing any degrees of freedom in a 
stochastic meaning. 

The extension to observations on a sphere is not straight forward. 

The Poisson kernel changes with the dimensions of the problem 

Circle: (t ·- t3)d]f 

Sphere: (t 2 

The spherical kernel gives a slightly increased maximal error. The error 
limit of eq. (12: 11) is still satisfied for 0.9 < t < 1 and ♦ > 0 in all applied 
models tested so far, However, detailed studies are missing. 

We consider the case where a prediction of the sectorial harmonic of 
degree and order m should be determined from an equiangular network with n 
parallel circles. A direct application of our previous formulas will be 

In the global case we let N represent all discrete observations. 
conclude: 

♦ - N -· mL2m-·l 

♦ = N·-2m 2 -m 

N 2n 2 

(most optimistic case) 

(most pessimistic case) 

(12: 12) 

Then we 

(12: 13) 

(12: 13a) 

These two formulas have to be considered as "rule of thumb", because 
they are only founded on the simple case of a circle. 
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The geodetic application of spherical harmonic expansions is mostly 
founded on the following rule 

where nmax is the highest degree (and order) that is computed from a set of 
surface elements of the size 9°x8°. 

The formulas indicate two ways for improving the predictions. 

1. Increase the N-value 
2. Decrease the t-value 

Both techniques result in bad condition numbers when applied too far. 

An equiangular l 0xl • grid will give 64800 observations. However, the 
djstribution is very unfavorable for a collocation approach. If we make the 
study with equal areas of 1 °xl O , then we only have about 42000 useful 
observations, but the distribution is more favorable. 

Rapp (1980) compared spherical harmonic solutions for the degree n=36 
and concluded: "We have demonstrated that the use of 5 • anomalies in 
potential coefficient determinations can introduce significant errors in these 
coefficients. Based on comparisom1 with solutions made with l "xl • anomalies 
the percentage error was small at the lower degrees but increased to 7 4% at 
degree 36. 

These results strongly suggest that future combination solutions to degree 
36 (or so) should be carried out with 1 "xl • anomalies and not 5° data." 

The study by Rapp indicates that the traditional 
for the determination of degree 36 is unsatisfactory. 
the use of about 42000 observations, which 
overdeterminations. 

use of 1654 observations 
He recommends instead 
means about 40000 

A colloc~!.ion approach is considerably more demanding than a straight 
forward spherical harmonic expansion. The given information has to allow the 
reduction of the presented data down to an embedded sphere. Reduction 
depth up to 30 km will be needed for this kind of operation. It is obvious 
that 1:mch operations are not well defined without overdeterminations. The 
global application of a collocation technique suffers from the large system of 
equations which have to be solved. The robust approach seems more 
promising for such applications. 

Local applications of the collocation techniques have been quite successful 
when using a Dirac approach as well as l,s.c. See section 21 for numerical 
results. 
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13. Autoprediction 

Our kind of solution for the free boundary value problem is based on two 
foundations: 

1. The given observations are discrete quantites on the external surface. 

2. The solution satisfies all given observations and defines the prediction 
of all missing data on the external surface (and in space), by the use of 
an embedded sphere. 

However, there is still an interest of finding the most suitable local 
prediction on the external surface. Such a prediction (or interpolation) is of 
interest for a suitable densification of the given set of observations, 

It seems logical to consider a more general kind of prediction, where any 
new predicted values can be used for reprediction of already observed values. 

Definition: Autoprediction is a technique, where a given observation is 
predicted from already available observations (or predictions). 

A most simple application of an autopredictor is shown in the following 
example (linear approach). 

1. A set of n observations y i is given. 

2. The predictor is Yj = r Y1d}?PtlL d}?Pi 
i i 

i ~ j (13: 1) 

where n is a preselected scalar and p 1 unknown scalars. 

If the predictor is "consistent" then it should be able to predict any 
given observation from already available observations (and predictions). 

We use the available predictions y i for predictions of the given 
observations y; and obtain. 

(13: 2) 

where s is the estimated autoprediction standard deviation. This is a useful 
measure of the quality of any applied predictor, for example l.s.c., Dirac or 
robust approach. 

The estimate is somewhat pessimistic because all prediction points are now 
in the worst positions. 

For the robust approach, we can use an inversion-free predictor for the 
densification (interpolation) of Ag* on the embedded sphere. 

Two applications of the autoprediction will be displayed for n = 1. 

I. An equiangular set of gravity anomalies are given for 1 •xI •. 
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2. Observations in a grid 2°x2• will be used for the prediction of the 
known points of the 1 °xl • grid. 

(13:3) 

Our first application will be for the eight closest observations of the grid 
diagonals of the prediction point, p 1 = 1 for the four closest points and Pi is 
a common unknown for the remaining points. The unknown will be determined 
by autoprediction. The following result was obtained (mean from several 
solutions}, when using i-values increasing with the distance to the prediction 
point. 

P1 1 

1/3 

This inversion-free predictor defines uniquely all missing observations 
inside the central l 0xl • block, This prediction is exact for the center point 
in a planar approach with observations according to eq, (13:7), The predictor 
favors equal spacing but accepts alternative spacings. Standard deviation can 
be estimated from eq. (13:2). 

The predictor was found more accurate than the linear predictor for all 
applied test cases. 

Let four equidistant observations be given on a straight line with the 
gravity anomaly defined by 

(13:4) 

where the c 1 -values are arbitrary scalars and d the distance from a fixed 
point on the line. 

The predictor eq, (13:3) gives an exact interpolation on the line for any 
position of the prediction points between the two innermost points when using 

P1 -1/3 (13: 5) 

where the subscript of p increases with the distance from the prediction 
point. The distance between the i-th point and the prediction point is 
denoted by d j i. See Bjerhammar (1983), See also example in section 6.1. 

Let four equidistant observations be given 
observations on both sides of the prediction point. 
defined by 

Ag*= COSID7T 
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The gravity anomaly is 

(13: 5a) 



The maximal prediction error of eq. (13:5) is then 

(9/8)(cos71'1ll/N - (l/9)cos3mn/N) (13: 6) 

where 21rm/N is the angular distance between observations and d j i is the 
angular distance between the i-th point and the prediction point. 

Let 16 equidistant observations be given in a quadratic grid with 11g* 
defined by 

(13: 7) 

where the c i -values are arbitrary scalars, x and y orthogonal coordinates, 
parallel with the grid system. The prediction point is at the center block. 
The predictor is 

Pi = l for the four closest and the four most distant points 

Pi = J 4/5 for remaining points (For n~2 in eq (13:1); Pi=l.) 

(Non--equi distant applications can be considered) 

(13:8) 

The prediction is error free at the center of the innermost block. Proofs 
for eq. (]3:3), (13:5) and (13:8) are obtained by expressing the gravity 
anomaly explicity in the predictors. See also Si.lnkel (1981b). 

Predictions inside the whole center block of the model eq. (13:7) are 
exact when using the predictor eq. (13:5) in the following manner. 

Let the prediction point have the coordinates (x 0 ,y0 ). 

There are four x-- lines with four observations in each line. 
1. Compute the 11g* at y 0 for each x-line. Predictor eq. (13:5). 
2. Use the four values of 1:0 for a prediction of t1g* at the 
coordinate (x0 ,y0 ). Predictor eq. (13:5). 

P. Enflo (private communication) used the following strategy. 

I. Predications are made for a set of points between the given points. 

2. The given points are predicted from the 'unknown points'. 

3. The errors at the given points are divided by 2 and subtracted from 
the observation value when making the final prediction of the unknown 
points. 

This predictor has remarkable properties. 

A numerical example will be given. 
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Given data set: 

y = t3 t = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 

We will use the observations in every second position for a determination 
of the best prediction at the missing points. 

Predictor: The Enflo technique displayed above. 

True y-set: -1, 0, 1, 8, 27, 64, 125, 216, 343, 512, 729 

Observed y-values: -1, 1, 27, 125, 343, 729 

Predicted y-values: 0, 14, 76, 234, 536 

Autopredictions: 7, 45, 155, 385 

Autoprediction errors: 6, 18, 30, 42 

Corrected autopredictions: -2, 18, ll0, 322 

Final predictions: 8, 64, 216 (Exact!) 

The Enflo predictor is exact (at the center point) for constant spacing and 
combination of t, t2, t3! It is directly applicable to our robust approach, 
where we make use of inversion-free predictors on the embedded sphere. The 
prediction of a new point on the external surface should be preceeded by an 
inversion-free prediction of the 4g* for the nadir point of the actual point on 
the external surface. The upward "continuation" is then t24g*. 

We also note the Box-Jenkins inversion free predictor. 
application will be 

4gj = + 4gi e-coji 
I 

The geodetic 

(13: 9) 

where r ~ i is the distance between the fixed and the moving point, and c is 
user-defined constant. It might be of special interest for predictions on the 
embedded sphere, and it can be applied for autopredictions. 

Hardy (1985) made use of a "multiquadric-biharmonic representation" of 
the disturbance potential. This kind of approach uses the following model 

Tj = + Djiai 
l 

(13:10) 

where T is the disturbance potential at the point P j and r • i the distance 
between this point and the point sources o1 1 • For the free boundary value 
problem we obtain. 

( 13: ll) 
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where r J is the geocentric distance of the actual observation and r 0 the 
geocentric distance of the point source. 

This approach has a limiting value for (r j - r 0 ) = 0 (with new a-values) 

Agj = ·-5 ~ [sin(wJd2)Jo11 
1 

(13:12) 

Numerical results from the Hardy predictor are found in section 21, where 
prediction of gravity anomalies on the external surface is displayed. For this 
kind of operation, the method is competitive with any of our alternative 
predictors. The validity of this predictor for prediction in space as well as 
for prediction of the potential and its derivatives has not yet been fully 
investigated, 

The predictor was applied to a test area in Manitoba (Canada). See 
section 19. 

The following results were obtained. (RMS prediction errors) 

Radius r 0 

(km) 
6350 
6360 
6370 

HMS error 
(milligal) 

10.2 
19.6 
10.2 

These results seem to indicate that the predictor might have rather 
adverse properties for prediction in space. See section 21 for further details. 

The predictor is interesting for (r rr0 ) = O, where it only operates with 
the autoprediction. The predictor excludes the closest observation, when it is 
at zero distance from the point source. 

The methods described in this section are only of interest for 
interpolation (densification) on the embedded sphere or the external surface. 

The general method of Hardy according to eq. (13.10) and eq. (13:11) is 
not regular at infinity and cannot be used for a solution of the geodetic 
boundary value problem. It is not an inversion-free predictor. Eq. (13:12) is 
convenient for densification (interpolation) between Ag*-values on the 
embedded sphere. 

A numerical application of eq. (13:5) is presented in section 6.1. It is 
obvious that the prediction technique is of interest for inversion free 
predictions when using 'high density' observations in an equiangular grid. A 
challenging application is expected for a 5' x5' grid. 

An extension of eq. (13.5) to six observations gives exact predictions for 
arbitrary combinations of first, second, third, fourth and fifth powers if 

Pt = P2 = 1, p3 = p4 = -% and Ps = P6 = 1/10 (13:12) 
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14. Combined solutions 

Spherical harmonic solutions have frequently been combined 
traditional Stokes' solution in order to obtain increased accuracy of the 
solution. The integration of the Stokes integral can be restricted to a 
circular cap t:.a. 

The geoidal height on the sphere is then computed by the formula 

with 
local 
small 

N (14: 1) 

where 

R is the mean earth radius 

-y the theoretical gravity 

t:.g the free air gravity anomaly 

S(w) the Stokes function 

w0 the radius of the circular cap (4a) where the gravity anomalies are 
given, 

t:.g0 then-th degree harmonic of the gravity anomalies, at latitude ♦ and 
longitude A 

x the maximum degree of potential coefficient used 

a the unit sphere 

N the geoidal height. 

t 0 = 2/(n--1) (for the most simple approach) 

- -
The coefficients (Cnm, S 0 m) of the spherical harmonic expansion are mostly 

obtained from an integration technique for the gravity anomaly 4g 

-
{ 9nm } _ l fft:. { cosmA }P- ( • ♦- )d 

S - 4 ( -l) g . , nm s1n <1 nm n-y n SlllBlA 
<1 

(14:2) 

- -
where P0m(sin♦) are fully normalized Legendre coefficients of degree n and 
order m, ♦ the geocentric latitude. The formula is normally discretized. 

The gravity anomaly on the sphere can be computed by 

"' n -
4g =, L L (n-l)(C0 mcosmA + S0msinm>t)P0m(sin♦) (14: 3) 

n=2 m=o 

The disturbance potential Tis 
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GM 
R 

"' r (14:4) 
n=:z 

Eq. (14:1) is not optimal with respect to the truncation errors. A number 
of modifications have been presented, which are more or less· complicated. The 
error of the solution is very much dependent of the size of the "cap" as well 
as the number of spherical harmonic degrees included. See Molodensky (1958) 
and (1962). 

For further details see Engelis et al (1984), (1985), Jekeli (1981), 
Heiskanen-Moritz (1985), Meissl (1971), and Sj8berg (1986). 

These techniques are useful for a combination of local observations of 
gravity anomalies and global spherical harmonic coefficients. Most solutions 
suffer from the artificial discontinuity of the potential at the edge of the 
circular cap. 

The straight forward application postulates no external topography and an 
ellipticity that can be ignored. 

A rigorous combination of local and global information can be made in a 
very simple way, when using our previous harmonic embedding. This is a 
consequence of the fact that our technique excludes all integrations. Still, the 
complete global contribution is included. A Dirac approach is considered 
below. 

The gravity anomalies of the local field are given by the vector Ag. 

From the spherical harmonic expansion of the global field we compute the 
corresponding gravity anomalies (Ag 5 ) for all given points. Then we solve for 
a set of Ag*-values which satisfy the relation 

(14: 5) 

The intermediate solution is then 

(14: 6) 

Predictions at the point q can then be obtained by 

GM X n 
FAg* Agq = r2 r r (n-l)tq(CnmCOSmA+SnmSinntA)Pnm(sin♦) + (14: 7) 

q n=2 m=o 

A GM X n 
S 0msinmA)Pnm(sin♦) S(c.i)q1Agf Tq = r r tq(CnmcosmA + + ro I rq n=:z m=o i 

where 
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Fi = (t~-tq)dqf 

tq r 0 /rq 

The geocentric distance to the point q is denoted d . The solution 
compensates for ellipticity and topography in a rigorous way if r 0 ~ b. 

The difficulties of the Molodenskii approach are introduced, by the 
definition of a continuous gravity field inside the circular cap Aa. We avoid 
all these difficulties, when using the harmonic embedding with an exact fit to 
the given discrete observations on the non-spherical external surface. All 
discontinuities of the potential and its derivatives at the edge of the circular 
cap are avoided after replacing the cap by the original discrete observations. 
See also Bjerhammar (1969b) and Lachapelle (1977). 

It should finally be noted that the size of the cap is of great importance 
when considering the application of so called improved Molodenskii truncation 
methods. 

Cruz (1985 p.60) stated ", .. one can see that the improved methods give 
better results for relative large caps only. From the practical point of view 1 

anticipating the use of nref=l80, then we can say that for cap sizes and 
accuracy levels of interest the improved Molodenskii method offers no 
significant gain over the unmodified case in both radial and horizontal 
disturbance computations." 

It should furthermore be noted that the Molodenskii truncation technique 
is disregarding the errors caused by a nonspherical external surface. In a 
number of applications, we can expect more serious errors from the 
topography. 

The most promising approach seems to be to use a high degree spherical 
harmonic expansion, which also includes corrections for ellipticity according to 
Pellinen (1982). The residual discrete gravity anomaly inside a given cap can 
then be taken care of by our tehnique of harmonic embedding. The highest 
accuracies are expected when a set of residual gravity anomalies are used for 
the determination of the optimal radius of the embedded sphere. We also 
consider using the technique with covariance functions which normally are 
applied to a fixed radius of the embedded sphere. In this case, we should 
include an adequate 'tayloring' of the covariance function. The omission of 
low degrees of the kernel (up to 20 or 50) gives a considerable improvement 
of the condition number and has to be used for dense networks. See 
Tscherning ( 1983) for further details. 
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15. The discrete mixed boundary value problem 

Holota (1981) formulated a general problem of determining the shape of the 
earth from gravimetric and altimetric data. It is here a question of a "mixed 
boundary value problem". The linerized problem was treated in some 
interesting papers. Holota used variational methods for a proof of the unique 
solvability of the problem for continents sufficiently small. These findings are 
of special interest because the classical Stokes' problem has a singularity for 
degree one. This means that the solution postulates that no harmonics of 
order one are included. Svensson (1982a) found that it was possible to extend 
the result to general ocean configurations regardless of the size of the 
continents. These considerations were based on the assumption of an 
infinitely smooth coastline. The solution was made in Sobolev space with the 
use of pseudo-differential operators. The numerical solution was completed 
with finite element methods. These two contributions give together the 
theoretical foundations for solutions of mixed boundary value problems in 
physical geodesy. 

SvensHon (1982a) questioned the application of traditional collocation 
methods for this kind of problem. He wrote "No proofs of convergence or 
stringent estimates of accuracy are known. However, it is unlikely that the 
wellposedness of the problem may be expressed in terms of the mean square 
norms which are in common use in collocation methods." The general theory 
of mixed boundary value problems has been studied extensively in the 
mathematical literature. These studies have not been considered to a greater 
extent in geodesy. Svensson (1982) makes the following conclusion: "There 
are strong indications, very disturbing considering the amount of work spent 
on the method for the last two decades, that the direct least squares approach 
is unstable for mixed data." 

Svensson (1985) made a more detailed study of the numerical aspect of the 
mixed boundary value problem and concluded. "Three questions concerning 
the altimetry-gravimetry problem in different forms are considered. The first 
question is whether those problems in general have unique solutions. The 
answer to this question is "no", which is shown both by analytical and 
numerical methods... The third question is whether classical methods such as 
least squares approximation are correct for the mixed problems. The answer, 
which is "no" , is again obtained by both numerical and analytical methods." 
Furthermore, he stated that the least squares method is unsuited for mixed 
problems. He favors "Galarkin method ... or methods with overlappings -
Bjerhammar," 

It is interesting to note the acceptance of overlapping as a useful 
technique for overcoming the difficulties encountered here. The study of 
Svensson has no direct indication of an application of the technique of a 
harmonic embedding for a discrete solution approach. The consequences of 
this special technique are rather special and some comments might be 
justified. 

1. The external surface is only "defined" at infinitesimal surface elements 
where observations of gravity or altimetry have been given. 
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2, The harmonic embedding generates a continuous gravity field outside 
the selected sphere with the properties: 

1. All given observation data are satisfied 

2. Harmonicity is valid down to the embedded sphere. AT=O 

3. T=O(r- 1 ) as r➔m 

4. All missing data (for the unknown surface) are generated directly 
by the solution on the embedded sphere. Consequently the 
"overlapping" is absolute for T and all its derivatives, as long as we 
have only a finite number of observations for the embedded discrete 
approach. 

This means that classical "mixed boundary value problem" is non-existent 
for our kind of study simply because we generate a solution which is always 
continuous for the different kinds of fictitious observations on the external 
surface. Furthermore, geoidal heights and gravity anomalies overlap 
continuously on this surface. 

This is true for the potential as well as its derivatives. The difficulties 
of the "mixed boundary value problem" are still exceptional and it might be 
desirable to make use of the MINQUE technique for the overdetermined case 
when choosing the weight relation between different kinds of observations in 
the overdetermined discrete approach. Renormalization might be of some 
interest for the mixed approach, but no results are available from this 
technique. 

We summarize the three alternatives. 

1. Svensson ( 1982a) Sobolev space technique 

AT =- 0 outside the earth 

T =- O(r- 1 ) as r ➔ 111 (regular at infinity) 

T ~Non the oceans 

aT 2T 
- -+ - = ar r Ag on the continents 

Sanso (1983) concluded that the maximal size of the continent cannot 
exceed 20.7% for this approach when including the zero degree component. 
Svensson (1983) found this problem well posed if the zero degree component 
was removed. 

2. Holota (1980) and Sanso (1985). Variational methods. 

outside the earth 

73 



T = O(r- 1 ) as r ➔ m (regular at infinity} 

.JT -· .Jr 6g on the oceans (Cf. eq. 16:1) 

aT 2T -+ :::: 
.Jr r Ag on the continents 

Maxjmal size of the continent, ensuring uniqueness is 14.7% of the total 
area according to Sanso (1983). 

We note that no harmonic embedding is used in these approaches. 

For a discrete approach, we make use of harmonic embedding in order to 
avoid the singularities at the border zones between the different kinds of 
observations, 

3. Discrete harmonic embedding (with overlapping), 

The mixed boundary value problem of the external sphere is replaced by 
the auxilliary (unmixed) boundary value problem for an embedded sphere. 
Observations of gravity anomalies and geoidal heights are considered to be 
overlapping to some extent, 

The solution on the embedded sphere generates a gravity field that 
satisfies all given observations and is continuous on the external surface. 
Clearly, we have no longer a mixed boundary value problem for the external 
surface. 

AT :. 0 outside the embedded sphere of radius r 0 

T = O(r- 1 ) as r ➔ m 

yNk on the oceans (and continents) 

on the continents (and oceans) 

Cf. eq. ( 3: 4} 

Cf. eq. ( 4: 3) 

where Nk is an observed geoidal height, and Agj an observed gravity anomaly. 
All surface elements on the physical surface are infinitesimal and no 
restrictions on the surface elements are required. The discrete observations 
define the constraints of the solution. 

The overdetermined approach benefits from a generalized inverse 
technique, although complete singularity is normally avoided. For most 
applications eq. (5.l:9a) can replace the generalized inverse technique. 

The difficulties of the mixed boundary value problem is somewhat related 
to the difficulties of the combined problem of Molodenskii, Cf. section 14, 
Finite surface elements generate discontinuities of the horizontal derivatives in 
most applications. 
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16. The fixed boundary value problem (known external surface) 

Modern satellite methods (GPS and VLBI) give direct determinations of the 
geometrical coordinates of points on the surface of the earth. This means that 
the free boundary value problem sometimes has to be replaced by an 
alternative approach, where the boundary surface is no longer considered 
unknown. 

We will consider thiR problem when using a discrete approach to an 
embedded sphere in accordance with our previous technique for the free 
boundary value problem. 

The disturbance potential is denoted by T. Furthermore 

(16: 1) 

where g j is observed gravity, 7 j theoretical gravity, r j geocentric distance 
6g j gravity disturbance. All quantities are related to the observation point 
P j. It should here be emphasized that r j is the true geocentric distance. 
Harmonicity is valid for the quantity 

aT 
r j rlr j 

and we use the Poisson integral as an integral equation for the determination 
of 6g* on the embedded sphere 

(16: 2) 

where r 0 is the radius of the embedded sphere, GJ the geocentric angle 
between the fixed and the moving point on the surface of the embedded 
sphere. 

In our discrete application we obtain a matrix equation 

where 

t r 0 /rj 

Equation (16:2) is rewritten by the use of a Legendre polynomial 

1 
6g = 4n 
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where <1 is the unit sphere and Pn(cosc.,) the Legendre polynomial of degree n. 

We make a corresponding expansion for the disturbance potential 

(16:5) 

where Xn is an unknown scalar which has to be determined. 

The differentiation of T with respect to rj gives 

4! JJ 6g*n~ox"(n+l)tn+ 2 Pn(cosw)d<1 
(1 

(16: 6) 

Equations (16:4) and (16:6) have to satisfy (16:1) for any degree of n. 
Thus we obtain 

Xn = (2n+l)/(n+l) (16: 7) 

Clearly, we have found the disturbance potential 

~ ff 
QI (2n+l} T ,_ 6g* I: tn+ 1 pn(cosw)d<1 

n=o n+l (16: 8) 

or 

T !:Jt ff 6g* H(w) d<1 
41r 

(16: 9) 
(1 

where 

H(w) = [2t/d + log(l+d-t)/(l+d+t)] (16: 10) 

The discrete approach gives the disturbance potential from the vector 
product 

(16:11) 

The vertical deflections are defined by (a measured clockwise) 

(16:12) 

where a is the azimuth and the elements of the vector (oH/aw) are given by 

aH 
aw 

See Bjerhammar and Svensson (1983) and Koch and Pope (1972). 
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17 Point values versus mean values 

Our previous analysis has exclusively been related to point values. We 
start with given discrete point values and the prediction will finally be 
discrete. A successful application of true point values is only possible for 
observations at limited distances. See for example Heiskanen-Moritz (1985) p. 
270. "For larger distances, 50 km or more, prediction of individual point 
values becomes meaningless." For such cases we must work with mean 
!).nomalies of, say, 1 •x] • blocks. For each block a large number of 
observations will be used when estimating the mean. This mean value will 
then be used as a discrete value, representing the center of the block. We 
keep the discrete technique when using the mean values. 

A selected surface element AS j might be linked with the following mean 

Agj = L PiAgi/n ± sj 
i 

(17:1) 

where Ag 1 is an observation, p 1 the associated weight, Ag the weighted mean, 
n the number of obHervations, and s j the standard deviation of the weighted 
mean. 

For the height information, a similar mean can be computed 

h L Pih 1/n ± sh 
i 

More advanced error models will sometimes be justified. However, only least 
squares techniques fully recognize the standard deviation of the observations. 

Most studies are made with rather simple estimation techniques, when 
estimating the mean value of Ag over a selected surface element. Integration 
techniques can normally not be used for applied models. 

Collocation methods benefit from mean values for most applications, The 
acquisition of mean values for a set of surface elements will sometimes be 
needed from information given by the use of a spherical harmonic expansion. 

Three different techniques can be considered. 

1. Integration is made over the whole surface element. The method is 
only convenient for theoretical models. The center point of each element 
is selected to represent the whole surface element with the discrete mean 
value. 

2. For each surface element, a discrete mean value is computed. This 
value is located to the center of the surface element. 

3. The surface elements are chosen so small, that the choice of the 
"center points" will be representative. 

If mean values are not available for a theoretical model, then discrete 
point values of a lower degree can serve as substitutes when forming "mean 
values". See also Rapp (1977a), (1978), (1978a) and (1979). 
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18. The energy integral for satellites 

If we consider a salellite moving in vacuum around the earth, then we can 
make use of the following relation. 

Potential energy + kinetic energy = constant 

We apply this relation to a satellite of unit mass. The gravity field of the 
earth will be given by a spherical harmonic expansion. The velocity of the 
satellite relative to the earth will be denoted by v. Mostly, the satellite 
velocities a.re not directly available. However, if the orbit of the satellite is 
known, then the satellite velocity can easily be computed. Modern GPS 
~cili•llil"H might give useful information for direct determination of satellite 
velocities. Formally, we can use any kind of velocity determination. 

For each satellite we obtain a system of linear equations 

(18: 1) 

where G is the Newtonian gravity constant, M the mass of the earth, v J is the 
satellite velocity at the geocentric distance r J, 41 geocentric latitude, A 
longitude of the satellite, Pnm associated Legendre polynomial of degree n and 
order m, Cnm and Snm harmonic coefficients. Finally, c is a constant which is 
valid for the actual satellite. ( Satellite velocities are measured relative to the 
earth.) 

Polar satellites will be most useful for this kind of operation, because 
they are scanning the whole surface of the earth. Any number of satellites 
cun be used, but the final solution has to be restricted in such a way that it 
includes, at most, the same number of unknowns and observations. 

Satellites at low altitudes will lose energy by friction with the atmosphere. 
There will also be a problem with the solar radiation. Corresponding 
corrections have to be applied for a successful application. The practical 
consequence will be that the constant c is changing with the time parameter. 
If there are sufficient reliable observations, then the quantity c can be 
replaced by the expression 

where the coefficients c:
0

, c
11 

c
2 

... are determined in the solution of the 
system of equations. 

The system will allow a direct combination with gravity observations on 
the surface of the earth when using an embedded sphere for the spherical 
harmonic expam~ion. The combined methods will normally suffer from 
inconvenient condition numbers. Successful applications for degrees higher 
than 20 require special precautions against bad condition numbers. 

78 



The most prom1smg application of the energy integral will require a 
specially designed satellite. Such a satellite should have two main components. 

1. An outer shell which is exposed to the atmosphere and the solar 
radiation in the traditional way. There is a vacuum inside the outer shell. 

2. Inside the outer shell, there is a free moving body which is the main 
measuring unit. This is the inner body. 

The inner body is correctly sensing the gravity field of the earth. 
However, its movements are not visible from the ground. I<'urthermore, the 
system works only as long as the two units have not been in physical contact, 
Therefore, the following two modifications are mandatory. 

1. The outer shell has a sensing device, which triggers an orbital 
correction to the outer shell, when the distance between the two units 
decreases below a specified level. 

2. The outer shell also includes a transmitter unit, which transmits the 
data for the position of the outer shell relative to the inner body, 

This kind of device has already been discussed in the geodetic community. 
See Colombo ( 1981a). 

'fhe suggested device has some interesting merits, but a successful 
application will need an advanced technique for tracking the movements of the 
satellite. There are several options, and it is expected that the most 
promising technique will be found at electromagnetic frequencies of 50 
Gigahertz (or higher). The influence of the ionosphere will here be rather 
modest. 

An indirect geodetic application of the suggested technique can make use 
of available information about satellite orbits. This orbit information gives 
directly the wanted velocities. 

For further details of the energy integral approach, see Bjerhammar 
(1969), Moritz (1971), (1974) Rapp (1973), (1974), Rummel (1976), (1981). 
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19, Satellite altimetry 

If perfect orbital observations are available, then satellite altimetry gives 
an excellent tool for mapping the sea surface topography over the oceans. 
Very detailed maps of the geoid as well as the gravity anomaly have been 
obtained by the use of this technique. See for example Rapp. (1985), 

Observations along the orbit are almost equidistant and eq (13:5) is 
directly applicable. Interpolations between four adjacent orbits can be made 
with the same technique, applied on the previous predictions. 

Pi = I for the two closest observation 

(19: l) 

Pi= -1/3 for the two remaining observations 

(For six observations see eq. 13:12,) 

where Nf is the geoidal height on the embedded sphere. The sea surface has 
only slight deviations from an ellipsoid, When using an embedded ellipsoid 
coinciding with the reference ellipsoid, we can use t:1 and predictions of the 
geoidal heights can be made all over the oceans. The Brun's formula gives 

where T j is the disturbance potential and -y J the theoretical gravity. Cf. 
section 8. 

Often, gravity anomalies are computed from observed geoidal heights. 
Molodensky (1962) outlined the following technique. 

The gravity anomaly is defined by 

If Ti is twice differentiable in the limit T j ➔T i, then the Poisson integral gives 
the radial derivative 

aT J T• 
+ 2! ff 

Ti-TJ dS (gr-r j) - ogJ (19:2) :: -.:.... ::: - = 
ilr ro (rj 2 +r~-2rjr0 cos~) 3 f 2 

or 

ilNJ N• 1 JJ Nt-NJ £iJ. (19: 3) - -!.:..J. + 2·nT
0 

d 3 d<r = or ro 'Y j 
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N;-NJ 
sin 3 ~ 

2 

(19:4) 

This formula has been called the inverse Stokes formula. There is a 
regularization problem for "'J 1 ➔ O. See Rummel (1977) for further details. 

The sea surface is very smooth and the ref ore a renormalization can be 
considered for the final solution. 

Primary solutions from eq. (19:3) are considered to be available. The 
validity of this approach is now verified by the following two steps. 

1. An embedded sphere is introduced with t " l for all observations. 

2. The gravity disturbances of eq. (19:3) are converted to og*-values by 
the simple transformation 

3. Renormalized predictions of N are made from eq. (19:5) 

where 

-r I 
I 

H(~) = (2t/d + log(l+d-t)/(l+d+t)) See eq. (16:10) 

4! JJ 1 

(19: 5) 

(19:6) 

We can also choose the alternative approach with integrations, which 
have to cover at least a circular cap around the actual point with discrete 
operations for the remaining surface .. 

4. Any significant errors at the given points are used for further 
improvements by the use of eq. (19:2). The distant zones can eventually 
be taken care of by the use of the technique discribed in section 
"Combined solutions". (Another approach will be to convert the gravity 
anomalies of distant zones lo gravity disturbances.) 

The sea-surface is directly observed by the altimetry technique. It is 
therefore natural lo make use of the formulas for the fixed boundary value 
problem when computing the geoidal heights. 
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20. Invariance with respect to the covariance function 

The early application of least squares collocation according to Moritz 
(1972) used a strong link to the theory of stochastic processes where the 
estimation of a covariance function was of utmost importance. 

Mostly covariance stationarity is postulated and this means in the geodetic 
application, that there should be _!iomogeneity as well as isotropy for the 
stochastic process. The covariance function should have an invariance with 
respect to distances as well as topocentric angles. 

The covariance function of the gravity anomaly can be defined by 

cov{4g(d)} = E{4g4g(d)} 

where E is the statistical expectation, 4g an observed gravity anomaly and 
4g(d) any gravity anomaly at the distance d. In geodesy, the expectations 
have been replaced by the integrated value over the unit sphere 

cov{4g(d)} = 
4
! ff 4g4g(d)d<T V E(4g) = 0 

(T 

where <Tis the unit sphere. Furthermore 

Var{4g} 

The square root of this expression is mostly called the root mean square 
(RMS) 

RMS{4g} = ✓ var{4g} 

For the real earth, the RMS of a point value of the gravity anomaly is 
about :t42 mgal. Mean values have always smaller R.M.S and for 1 °xl • :t25 
mgal might be representative. The covariance drops down to about t 2 mgal 
for a geocentric distance of about 5°. The most applied covariance function 
was given by Tscherning-Rapp (1974). 

The covariance function has played an important role in modern 
geophysical studies. It has its own merits, which don't necessarily postulate 
an application to the theory of stochastic processes. 

However, the geodetic use has mostly been combined with an application to 
the stochastic processes. 

Lauritzen (1973) proved non-ergodicity for a normal distribution in the 
geodetic case. This might indicate that the covariance function cannot be 
used for an optimal prediction technique. Lauritzen stated however, that it 
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cannot be "a bad idea" to make use of an empirical covariance function for 
gravity prediction. However, the estimators are no longer stochastic but 
instead minimum norm estimates (not necessarily unbiased). 

The validity of this technique has been very much questioned, but it has 
been expected that the least squares collocation is the best technique for 
estimating standard deviations of the unknown quantities. It is true that 
standard deviations are frequently computed by the use of least squares 
collocation. The value of these standard deviations is somewhat limited 
because they have infinite confidence intervals (zero degrees of freedom). 
The user simply makes an error propagation when postulating that the 
standard deviation of unit weight is known. Estimated standard deviations 
cannot be obtained from pure collocations, because they include no degrees of 
freedom. 

Our impulse technique gives unbiased estimates of the variance for any 
degrees of freedom, with the use of classical stochastic models. 

Very largo sets 
of a residual field 
primary evaluation. 
equally applicable to 

of observations are most conveniently studied by the use 
of observations, which are not included in the direct 
See for example Cruz (1985). This kind of technique is 
all methods discussed here. 

We will now collect available information about the equivalence between 
minimum norm solutions and the Dirac technique. 

1 :0 If the external surface is a sphere, then the mm1mum norm solution 
and the Dirac solution are identical for rA = r jr 0 • See sections 9 and 10 

2:0 If the external surface js non-spherical, then the minimum norm 
solution and the impulse technique are identical if the impulses are located 
at the geocentric distances r 0 = rg/rg where rg is the geocentric distance 
of the actual point. See sections 9 and 10. 

3:0 When a weighted norm solution was used on the Manitoba field, 
together with the Dirac technique, then the optimal solutions were found 
to have identical RMS errors, but different depths to the embedded 
spheres. See Sj8berg ( 1978). Hardy (1985) obtained the same minimum 
variance with a completely different technique. All three techniques 
included an indirect least squares approach. 

4:0 Cruz (1985) obtained the optimal solution for a depth to the embedded 
sphere of 20 km for the Dirac technique tQ,98 mgal. The minimum norm 
solution (l.s.c.) was optimal at a depth of 3.5 km. The last solution gave 
about 50% larger RMS error for the predictions (tl.55 mgal). However 
these solutions were obtained with maximal residuals of 0.5 milligal, for the 
iterative approach. We conclude that the two solutions have no significant 
difference. A later study of the same model gave almost the same optimal 
variance for the "diagonal invariant" technique (t0,96 rngal), The depth 
was now 20 km. 
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These investigations indicate that the optimal solutions are almost 
invariant with respect to the covariance function, when allowing variation of 
the radius of the embedded sphere. 

The study of Katsambalm, (1981) gave significant improvements with the 
Dirac technique compared with a solution using the Tscherning-Rapp 
covariance function. However, no optimization of the radius of the embedded 
sphere was made for the l.s,c. technique. 

Conclusions. As long as we have no overdeterminations, then the outcome 
from a pure collocation is unique, but the results vary with the choice of the 
radius of the embedded sphere or the covariance function. 

If overdeterminations are added (degrees of freedom), and the radius of 
the embedded sphere is a variable, then the minimum variance seems to be 
invariant with respect to the choice of covariance function. We postulate that 
all compared covariance functions include the same degree of a Legendre 
polynomial. No rigorous proof has been given for this statement. However, 
the study of Lauritzen (1973) gives some support for this statement. If there 
was any superior covariance function for the actual stochastic process, then 
no invariance could be expected. 

It seems justified to recommend an optimization with respect of the radius 
of the embedded sphere. This should mostly be a more rewarding technique 
than an optimization with respect to the choice of the covariance function. 
(The covariance function includes an infinite number of unknowns and the 
radius of the embedded sphere is defined by a single unknown.) 

Perhaps it should be mentioned, that the spherical harmonic expansion for 
an embedded sphere is not uniquely estimable from a set of diacrete 
observations on the non-spherical surface of the earth. There will be an 
infinite number of sets of degree variances, which all will fit equally well to 
the given observations. Cf Keldych-Lavrentieff (1937). 

Present covariance functions used in geodesy I mostly express the 
covariance as a function of the geocentric angle, without considering the 
shape of the topography. This might explain that the more advanced L2 -norm 
solution mostly have given poorer results than solutions according to 
Bjerhammar (1964) or the equivalent approach Bjerhammar (1976). See 
Katsambalos(l981), Sjoberg (1978) and Cruz (1985). 

If there is a reliable sphericcal harmonic expansion, then this information 
can be used rigorously by the combined technique of section 14 (without 
forming any covariance function). 
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21. Test models 

Several comparisons have been made between the Dirac approach and the 
so called least squares collocation (1,s.c) of Krarup and Moritz, 

Some results will be solicited here. 

Sj8berg (1978) obtained the following RMS vertical deflection errors for 
the Molodenskii mountain models. (Equal angular differences) 

No. of 
obs. 

93 
99 

Collocation (COVA) 
( II 

:t 0.59 
:t 11.4 

Dirac 
f II 

:t 0.90 
:I: 1. 3 

The number of predictions was 37. Both methods suffered from using the 
largest set of observations. The least squares collocation (1,s.c,) "failed" for 
the larger set. Sj8berg (1978 p.71): "For a given radius of the Bjerhammar 
sphere the Dirac method is more stable." 

Katsambalos (1981) studied the gravity vector in space when using surface 
data. For a 10°-inclination conical model he used on area (r.8x0~8 with a 2' 
grid. 

Predictions at a height of 10,000 m: 

Errors 

True L.s. C Dirac 

--36. 89 rngal 8.10 mgal -1.82 mgal 
34.66 8.51 -1.55 
29.48 8.99 -1.39 
23.43 9.26 -1.25 
17.93 9.53 -1.19 
13.51 9.72 -1.21 
10.15 9.99 -1.18 

A considerable improvement was obtained with the Dirac approach in spite 
of less computations. Cruz (1985) made use of a New Mexico test area of size 
2 • x2 • and 5' x5' surface elements. A comparison was made at 25 points in 
space where the gravity anomaly was known at three orthogonal directions. 

The following results are partly from this study. By courtesy of the 
author we have also the results from "diagonal invariance" and depths below 
20 km, 
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Reference: 
Eq. (4:4) Eq. (9:4) Eq. (11:3) Eq. (9:17) Dipoles 

Depth Dirac(Ag*) L.s.c(Ag*) fl Diagonal L.s.c(T*) Dirac(m*) 
invariancett 

1 km 3/6.01 10/2.39 1/11.43 10/12.17 3/11.88 
3.5 5/1.79 10/1. 55 3/4.7 10/6.28 3/8.5 
5 7 /1. 23 10/1. 96 5/2.22 10/4.12 3/5.21 
10 10/1.14 10/2.57 10/1.ll 10/2.26 5/1.08 
15 10/1. 23 10/3.17 10/1. 31 10/1.82 10/1.05 
20 10/0.98 10/2.96 10/0.96 10/2.67 10/1. ll 
30 10/1. 43 10/1.49 
40 10/2.02 10/1. 90 

The number of iterations is given as the first figure and the second 
figure gives the RMS prediction error in milligal. 

Cruz (ibidem) concluded "the Dirac systems have faster convergence 
(fewer number of iterations) than the least squares collocation system ... For 
the dense 5' x5, data used in our New Mexico tests ... the Dirac results were 
superior to those of the l.s.c. because of the ill-conditioned matrices in the 
latter system... Matrix conditioning problems with the 1.s.c. approach support 
preference to the Dirac systems for rigorous treatment of the topography at 
detail (5' x5,) resolutions. 

Stoski (private communication) obtained the following condition number for 
the Molodensky mountain model. (Equal angular differences). 

Dept of the 
Sphere Dirac approach L.s.c (COVA Model 4) 

10 m ll,437 36,232,433 
375 2,137 lll.324.562 
750 1.930 

1200 1,434,135.264 
1500 3,721 

The grid system uses equal angular size elements with a pole at the top 
of the mountain. See Sj8berg (1975): 99 points model. We note that the 
condition numbers are almost squared for the l.s.c. technique. 

Tscherning ( 1983) showed how improved results could be obtained with the 
least squares collocation when using the model of Moldensky. For this 
purpose he truncated the traditional covariance function by omitting the 20 
lowest degrees (or 50). He concluded: "We should be able to get results as 
good as using the Dirac ... approach," A simpler way of reaching this goal 
might be to optimize the radius of the embedded sphere, which gives results 
compatible to the corresponding Dirac approach. However, the depth to the 
embedded sphere is more critical. The study by Cruz (1985) shows that we 

86 

http:10/12.17


can allow a variation between 3.5-30 km for the Dirac approach without 
exceeding the variances found for 1.s.c inside the depth interval 3.5-5 km. 
Furthermore, the minimum variance of the Dirac approach is less then for the 
l.s.c. 

The "diagonal invariant" approach (section 11) has the same low mm1mum 
variance as the Dirac approach. It resembles the Dirac approach more than 
the l,s.c. However, a detailed analysis of this method is still not available. 
Furthermore, no lest results have yet been presented for the renormalized 
approach when using local models, (Tho technique is not directly available.) 

Sj8berg (1978) made a study for a test area in Manitoba (Canada). 
Gravity anomttlies were predicted from 87 observed anomalies. The number of 
predicted points was 50, The study included a Dirac approach and a least 
squares collocation (subroutine COVA; see Tscherning-Rapp (1974)), Iterations 
were interrupted when the number of iterations exceeded 30 or when the RMS 
residuals were less than 0.25 mgal (alternatively the maximum residual less 
than 0.5 mgal), Later Hardy (1985) used the same model. 

Dirac Method L.s.c Hardy's 
technique 

ro depth No. of RMS error No. of RMS error RMS error 
(km) (km) iterations [mgal] iterations (mgal] (mgal] 

6315 55 30 10.7 30 11.8 10.9 
6320 50 25 10.6 30 11. 7 10.8 
6325 45 16 10.5 30 11.5 10.7 
fi3~·W 40 10 10.4 30 11.3 10.6 
6335 35 7 10.2 30 11.1 10.5 
6340 30 5 10.2 30 10.9 10.3 
6345 25 4 10.2 25 10.6 10.2 
6350 20 4 10.4 11 10.4 10.2 
6355 15 3 11.0 5 10.2 10.4 
6360 10 2 ]2.0 4 10.4 19.6 
6365 5 2 13.2 2 11.9 16.5 
6370 0 1 13.5 1 13.5 10.2 

The optimal results were obtained for the depths 25-35 km with the Dirac 
technique and at n depth of 5 km when using the I.s.c. The RMS of the 
observed gravity anomaly at the prediction points was t 13.4 mgal (after 
subtraction of the mean value -2.8 mgal.) Hardy (1985) used a predictor, with 
rather different properties. All three methods had still the same optimal 
RMS-value. However, this "invariance" is most certainly restricted to 
predictions on the external surface. 
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22. Relativistic geodesy 

This presentation of relativistic geodesy uses a simpler technique than in 
Bjerhammar (1986). A technique for measuring potential differences with 
high-precision clocks (masers or equivalent) is described. The method can 
operate over arbitrary terrestrial distances using two clocks. The drift 
between the clocks is estimated by using closed loops. The clocks 
continuously operate during the entire measuring interval. No satellite links 
are necessary but Very Long Baseline Interferometry (VLBI) and the Glo1ml 
Positioning System (GPS) can be combined with this method. 

Tape recorders do not ne1:1d to be directly available for the kind of 
operation in mind. Instead we are going to use the clocks themselves as 
relativistic time traps in the phase mode. All phase comparisons are made 
over coaxial (short) links when the clocks are available at the same site. 
Thus the accuracy is limited only by the relative stability of the two clocks. 
Consequently, Doppler effects of the Newtonian type have no impact on the 
measuring procedure. Finally, it is also possible to compensate for drifts 
between the two clocks. 

According to the relativistic approach we obtain the following simple 
relation between the geopotentials Wp and w0 and the frequencies fp and f 0 
for two points P and Q 

(22: l) 

where c is the velocity of light. We have a weak gravity field which means 
the following approximation may be used: 

(22:2) 

where f = (fp + f 0 )/2. With this approach we can determine geopotential 
differences after measuring the frequency differences at the two points in 
question. 

Somewhat conflicting statements concerning the absolute stability of atomic 
clocks can be found in the literature. Reinhardt et al. ( 1983) found a relative 
frequency drift of 10- 15 /day for two hydrogen masers, NP-2 and NX-3, in a 
study covering 3 days. Peters (1984) presented results from a new kind of 
hydrogen clocks with very prom1smg performance. We consider these 
accuracies sufficient for interesting geodetic application when using a 
measuring technique that properly takes care of drift. 

The difference in "proper time" between two stations on the ground is 
extremely difficult to observe over large distances. It is therefore important 
to develop a measuring techniuqe that takes care of all systematic errors to 
the highest possible degree. We consider the time needed for a measurement 
as being of minor importance in this context. Instead we require that the 
resulting accuracy should always improve when increasing the number of 
complete measuring steps. It is understood that the measuring procedure can 
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be used over a time span of up to a year. This should be acceptable for 
measuring potential differences over very large distances, 

Definitions: 

Universal_ time is invariant with respect to potential and velocity. (Mostly 
called coordinate time.) 

PrqQer. time is a function of potential and velocity. 
Lifshitz (1974), Kilmeister (1973), 

See Landau and 

The idea of absolute time is rejected in Einstein's (1916) theory of 
relativity. 

In inertial reference systems, the relativistic approach makes use of an 
infinitesimal invariant interval, which is defined in a four-dimensional 
coordinate system 

(22:3) 

where c is the velocity of light, t the coordinate time, and x, y, and z position 
coordinates, If T is proper time then 

In general one can express this interval ds in tensor notation 

ds 2 (22:4) 

Here g I j is a matrix with special properties that justify the name 
"tensor". In our application, it is sufficient to know that this matrix is 
symmetric with the following elements: 

(22:5) 

if 
goo - 1 

gi i = ·-1 for i :;t; 0 

gi j - 0 for i :;t; j 

then this four-dimensional coordinate system is called Galilean. 

The tensor g i j is called the metric tensor, The inverse of the metric 
tensor is denoted by g i J. 
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Schwarzschild (1916) computed the metric tensor for a centrally symmetric 
gravitational field with the coordinates x0 = ct, x 1 = r, x 2 = ♦, and x 3 = A 

goo 1 - 2V/c2 

g l 1 = -l/(1-2V/c2) 

g22 = -r2 

g33 = --r 2 cos 2 ♦ and gi j 0, i = j 

where ♦ is geocentric latitude, A longitude, r geocentric distance, and V 
gravitational potential. 

Kerr (1963) included the rotation of the actual body and obtained after 
postulating a stationary time-independent centrally symmetric gravity field 

goo -- l - 2V/c2 

gl I = -1/ (1-2V /c2) 

g22 -r2 

g33 ::: -r 2 cos 2 ♦ 

g03 = c- 3GMr- 1 cos 2 ♦ remaining g i j = 0 

where G is the Newtonian constant and M angular momentum with the 
approximation 

M = (2mR2w)/5 (for the equator) 

with m mass, R radius, and w angular velocity for the body in question. 

With all mass concentrated inside a sphere of radius 2Gmc- 2 (0.9 cm for 
the Earth) we obtain a "black hole". For zero angular momentum, the Kerr 
metric is identical to the Schwarzschild metric. For zero mass, the 
Schwarzschild metric becomes the Galilean metric (special relativity). 

The Kerr solution holds for an external observer (outside the Earth). We 
note that our new metric tensor includes a nonsymmetric term. The Earth 
rotates with a rather low velocity, and hence the correction will be small. 

The formulas can be transformed for an observer rotating with the body. 

We introduce new coordinates and ignore the relativistic change of length 
X A -- c,,il, d.l\ dX + c,,idt, d.1\ 2 = dX 2 + c,,i 2 dt 2 + 2c,,idXdt (22:6) 

where A is the geodetic longitude. Our study will be related first to two 
stationary clocks at different positions on the Earth. 

The "Einstein interval" ds is now defined by new g-values 
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ds 2 (1 

2GMcos 2 ♦/rc 2 )dtdA (22:7) 

Two clocks at different positions 1 
and f 2 • We put w* V + (l/2)r 2 w 2 cos 2 ♦ 

and 2 generate the two frequencies f 1 

GMwcos 2 ♦/rc 2 and obtain 

[f /fj = (1 - 2Wt/c 2 )( 1 -- 2Wf/c 2 ) (22:8) 

where wf and wt are the relativistic geopotentials at. 1 and 2. 

We now introduce a velocity of the clock relative to the surface of the 
earth 

dx 
dt ::. V 

Then we obtain (excluding time independent variables) 

ds 2 

or 

dt -- d-r 

v2 

c2 

1 

dA (2wr 2 cos 2 ♦ _ 2GMcos 2 +]] 
dt c 2 rc4 

dA(2wr 2 cos 2 ♦ _ 2GMcos 2 ♦] 
dt c 2 rc4 

We disregard terms including c- 4 and obtain 

Thus 

or 

A circumnavigation at the equator gives basically 

(nanoseconds) 

For further details, see Misner et al. (1973). 
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22.1 The relativistic geoid 

The covariance elements g i j of the metric tensor are defined by the 
Einstein equations (Misner et al. 1973). In vacuum (outside a body), these 
equations can be written 

R,j - 0 

where 

Rij = ar?j/i:Jxh - ar?h/axJ + r?jfWm - f'J'hf1m (Ricci tensor) 

We have used the Chirstoffel symbols 

(22.1:1) 

(22.1:2) 

(22.1:3) 

The metric tensor is a nonsingular symmetric matrix in our application. 
The elements of the inverse metric tensor are denoted by superscripts. The 
inverse relation is given by 

1 for i j; otherwise 6 = O) 

See also Hotine (1969) for the tensor definition. 

or 

An equipotential surface has to satisfy the condition 

goo= constant 

(1 - 2V/c 2 

- r2w2 cos 2 ♦/c 2 + 2GMwcos 2 ♦/rc4 ) = constant (22.1:4) 

where V is the mass potential (including extraterrestrial bodies). The 
Newtonian geopotential is obtained by adding the centrifigual potential 
(r 2 w2cos 2 ♦/2). The relativistic geopotential is finally obtained after correcting 
for angular momentum (GMwcos2 ♦/rc 2 ). This means that there is a minor bias 
in the Newtonian geopotential. It will be harmless for normal geodetic 
operations. 

Definition: The relativistic geoid is the surface nearest to mean sea level on 
which precise clocks run with the same speed. 

This definition of the geoid is valid over the oceans as well as the 
continents. The geoid is directly observable where it is accessible, Mine 
shafts can be used for observations on the continents. The observed geoid 
represents the "true equipotential surface" with respect to the energy 
aspects. (Newtonian physics gives equipotential surfaces which ignore the 
relativistic correction for angular momentum.) See also Bjerharnmar (1985), 

There is no harmonic embedding involved in the relativistic geodesy. We 
still include this chapter because the relativistic approach is needed for a 
rigorous definition of the geoid, 
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23. Concluding Remarks 

Various discrete techniques have been studied and we conclude: 

I. Simple discrete techniques with Dirac measures (of gravity or mass) have 
given solutions which are at least as good as more advanced solutions with a 
minimization of norms in Hilbert space. 
2. Solutions with buried mass technique and Dirac approaches with gravity 
anomalies give almost identical results in local applications, when using 
unknowns in the same positions. 
3. A Dirac solution with the unknowns located at the nadirpoints of the 
observations is identical to an L2 -norm solution, minimizing the gravity 
anomaly, if the product of the geocentric distances of an observation and its 
Dirac point is a constant (equal to the square of the radius of the embedded 
sphere of the Hilbert space approach). Lrnorm solutions are only optimal 
when comparing to solutions on the same embedded sphere. 
4. Predications on a 'smooth' external surface are almost invariant with 
respect to the choice of covariance function if the optimal radius of the 
embedded sphere is determined by the use of a residual set of observations 
(using equal degrees). 
5. In a rugged topography and with a dense network of observations, the 
best predictions have been obtained with Dirac technique (Cruz 1985). 
6. Estimated standard deviations are most conveniently obtained from the 
Dirac (and buried mass) techniques with all unknowns on a common sphere 
and proper use of overdeterminations. All predictions have here finite 
confidence intervals. 
7. The hypothetical error propagations used for L 2 -norms have infinite 
confidence intervals (zero degrees of freedom). 
8. Buried masses on an ellipsoid have the advantages of eliminating the error 
of ellipticity without any need for ellipsoid corrections. 
9. Renormalization of integral equations gives some useful applications for 
global applications and the autoprediction technique gives error free 
predictions for interesting gravity distributions. 
10, The Newtonian flat space contradicts the existence of gravitational 
potentials according to the theory of relativity! 
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24. APPENDIX: Hilbert Space Considerations 

Let E be the earth's surface and O the complement of the points enclosed 
by E. Continuous functions satisfying the Laplace condition and regular at 
infinity are denoted H(O). For the geodetic disturbance potential T(P) we have 

T(P) E H(O) 

A fully embedded sphere of the radius r 0 is located at the gravity center 
of the earth, 

H(c.,) is a subset of H(O) 

H(c.,) E H(O) 

The complement of O is denoted oc, B is the open set of points enclosed 
by the sphere S of radius r 0 • Furthermore "' is given by 

"'= (B+S)c 

The theorem of Keldych-Lavretieff states the H(c.,) is dense in H(O) which 
means that there exists potentials T' (P) E H(c.,) which uniformly approach the 
potential T(P) E H(O). 

An inner product and a norm are defined for H(c.,), 

Inner product: 

(f(P), g(P))p = 2! Jff[r! - r(~)]vf•vg dGJp 
GJ 

= lirn l ffr(P)g(P) dS~ 
1:➔o 41r(r0 +t) 

5 

Norm: 

Hf(P) II = (f(P), f (P)) p½ 

where S' is t.he boundary surface of "'t C "' with proper restrictions. 

H(c.i) is a separable Hilbert space with the "reproducing kernel" 

K(P,Q) = r5{[r(Q)r(P)] 2 
- r4} 

{(r(Q)r(P)] 2 -2rgr(Q)r(P)cosc.ipg+r~} 3 i 2 VP, Q E"' 

With Q on S we obtain the traditional Poisson kernel 

VQ ES 

For the reproducing kernel we obtain 
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f(P) = (K(P,Q), f(Q))Q Vf E H(w) 

Exploring the properties of reproducing kernels we obtain the solution of 
the Dirichlet problem for 

AT(P) = 0 VP E w 

The exterior boundary value problem for the earth's surface will be 
approached when considering 

r(P)Ag(P) E H(w) VPE w 

and 

K((M,Q), r 0 4g*(Q))g = r(M)4g(M) \IM EE and Q ES (24:3) 

Here we can determine 4g*(Q). The disturbance potential T(P) is then 

VP 0 

S(P,Q) is the Stokes-Pizzeti integral. This is an alternative to our previous 
presentation. 

Bjerhammar (1963), (1964) used eq. (24:3) with the kernel eq. (24:2), 
Krarup (1969) used the kernel (24:1) with L2 -norm minimizations on the 
re-sphere. 

12-·norm: 

JJ(4g*) 2 dS=min 

Covariance function: 
"" cov(Ag,4g) = ~=

0
(2n+l)tn+ 2 p0 (cosw) 

"" cov(T,Ag) = rJE- (2n+l)(n--1)-1 tn+ 2 p0 (cosc..i) n-2 
"" cov(Ag,Ag) = E_ (2n+l)(n-·1) 2 tn+ 2 P0 (cosw) 
n--0 

"" cov(T,Ag) = rj~=
2
(2n+l)(n-l)tn+ 2 P0 (cosw) 

cov(4g, 4g) "" = E_ (2n+l)x~tn+ 2 P0 (cosc..i) 
n-0 

x0 =(n-1)/(2n+l) 

The last covariance function gives a minimization of the L2 -norm of the 
single layer density (µ) on the embedded sphere. Note the resemblance 
between the first and the last covariance function for large n-values. 

All these L2 -norms solutions are also obtained as limiting values for 
condition adjustments with the carrier points at "equal spacing" on the 
embedded sphere, if the number of carrier points goes to infinity. 

Cf. Krarup (1969), Moritz (1972), Sjoberg (1975), Tscherning (1978a) and Xu 
et al (1984 ), 
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