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Abstract 

Biofouling has proven to be a primary challenge for membrane filtration. Biofouling 

occurs when microbes secrete extracellular polymeric substances (EPS) which adhere to 

membrane surfaces. EPS impede the flow of treated water through membrane pores, 

resulting in increased pressure demands and operation costs. Importantly, the protein to 

polysaccharide ratio of EPS affects its propensity to adhere to surfaces. However, the 

effects of pH on EPS adherence have not been investigated over a broad pH range. This 

study investigates how pH affects the composition of EPS fouling layers that have been 

cleaned with ultrasound. This is significant because ceramic membrane technology 

allows for filtration at previously unfeasible pH levels, and it is unknown how operation 

under these pH conditions will affect fouling layer composition. In this study, 0.2 micron 

Whatman Anodisc ceramic membranes were fouled with EPS solution. During each 

filtration, flux measurements were taken. Membranes then underwent either timed 

sonication or no sonication. During filtration and sonication, pH was kept constant at a 

value of 3.5, 6.9, or 9.5. Confocal laser scanning microscopy, in conjunction with 

MATLAB image analysis, compared protein and polysaccharide intensities of each 

fouling layer. It was found that fouling layers initially exhibit a wide variety of protein to 

polysaccharide ratios, and that preferential removal of regions high in proteins occurs at 

pH 3.5. Additionally, EPS solutions exhibited faster filtration rates at pH 3.5 than at other 

pH values. Results were attributed to pH-mediated interactions between EPS components 

and the membrane surface and structural conformations of EPS. 
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Chapter 1: Introduction 

 

To resist environmental stresses and facilitate adherence to a wide variety of surfaces
 
[1], 

microorganisms secrete a protective matrix of extracellular polymeric substances (EPS). 

More than 99% of microorganisms secrete a network of EPS [2]. Membrane technology 

plays an increasingly prevalent role in water treatment, however, membranes are prone to 

fouling by EPS that adhere to their surfaces and block pores [3]. Membranes are made 

from polymers or ceramics, and operate by size exclusion. The effective diameter of a 

membrane’s pores determines the size of molecule that it can exclude, giving rise to the 

classification system for membranes. Microfiltration and ultrafiltration membranes, pore 

size 10 to 0.1 µm and 100 to 2 nm respectively, are used for pretreatment of wastewater 

streams. Nanofiltration and reverse osmosis membranes have much smaller effective pore 

sizes, between 2 – 1 nm and less than 1 nm respectively, and are capable of excluding 

individual ions, primarily for drinking water treatment. Polymer membranes are more 

widely employed than ceramic membranes; however, ceramic membranes are becoming 

more popular due to their ability to withstand harsher cleaning conditions, such as high 

pH and temperature, which would normally destroy polymer membranes.  

 Membranes are susceptible to the phenomenon of fouling, and biofouling remains 

a major obstacle facing membrane technologies. EPS is the most significant contributor 

to biofouling [4]. EPS initially foul a membrane through the mechanisms of pore 

clogging and foulant adsorption [2]. Pore clogging depends on surface interactions 
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between EPS and membrane pores as well as closeness in size between the foulant and 

pores [2]. Surface adhesion depends on parameters such as surface charge and distance 

between the foulant and the membrane. Acidic conditions, calcium ion content, and high 

ionic strength can reduce energy barriers between EPS and a membrane surface, 

facilitating attachment [2]. 

EPS are a heterogeneous mixture of high and low weight polymers, most 

prominent among which are proteins and polysaccharides. The exact chemical 

composition of EPS is far from clear [1]. Instead, characterization of EPS usually focuses 

of the quantification of its primary components. An important parameter of EPS is the 

protein to polysaccharide ratio, which is abbreviated as PN/PS. The PN/PS of EPS 

determines several important traits. EPS with a low PN/PS exhibit higher adherence to 

membranes [4] and higher floc cohesiveness when subjected to shearing [5]. PN/PS also 

correlates negatively with the rate of membrane fouling [6]. PN/PS has also shown to be 

important in determining the surface charge of EPS. Polysaccharide content negatively 

correlates with hydrophobicity and surface charge. Overall, the polysaccharide portion of 

EPS is hydrophilic, and protein content has a positive correlation with surface charge and 

has been found to be hydrophobic [8]. These properties are due to the variety of 

functional groups displayed by EPS proteins and polysaccharides. Wang et al. (2011) 

found that positively-charged amino groups located in EPS proteins can neutralize 

portions of negative charge of acidic EPS functional groups, such as carboxylic and 

phosphoric groups [8]. 

Other substances present in EPS include humic substances, lipids, nucleic acids, 

and uronic acids [9]. EPS has to ability to complex with heavy metals due to its wide 
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variety of functional groups. Much like a cation exchange resin, when heavy metals are 

added to EPS solution, EPS will release Mg
2+

 and Ca
2+

 [9]. Ions such as calcium and iron 

associate with EPS proteins and assist in flocculating EPS through divalent cation 

bridging and double layer compression, both processes further contributing to surface 

adherence [9]. Further contributing to EPS flocculation is entanglement of long EPS 

polymers [9]. Molecular weights of EPS polymers can range from a few hundred Daltons 

to over 300,000 Daltons [1]. Diversity in functional groups lends EPS the ability to bind 

to both hydrophobic and hydrophilic surfaces, and to cohere to other EPS, via a variety of 

mechanisms [2]. One relevant mechanism is mediated by charge interactions between 

ionizable EPS functional groups, such as carboxyl, phosphoric, sulfhydryl, phenolic, and 

hydroxyl groups [9], and the surface potential of a membrane via electrostatic attraction 

[10]. EPS surface charge is neutral when it is at its isoelectric point but otherwise exhibits 

an inverse relationship with solution pH. Solution pH also affects the spatial distribution 

of EPS on a nanometer scale. For example, at pH 11, EPS was reported to be 

homogeneously distributed and swollen as functional groups had aquired repulsive 

charges. Conversely, decreasing the pH from 8.8 to 0.7 was shown to cause EPS 

aggregation into non-homogenous networks of dense domains, characterized by 

decreased distance between polymer chains [11]. The size of aggregates of EPS 

molecules also increases under elevated pH conditions [10]. Thus, solution pH is an 

important contributing factor to EPS adherence to ceramic membranes, especially given 

that ceramic membranes can tolerate a wider pH range than their polymer counterparts. 

Extraction methodology is a critical part of any EPS study. EPS extraction starts 

with the collection of a biofilm. Unfortunately, there is no widely agreed upon method of 
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thereafter extracting EPS. Prevalent, high-yield extractions involving addition of 

formaldehyde and NaOH are shown to alter the chemical makeup of the extracted EPS 

[12]. Other issues include extraction chemicals remaining in final EPS solutions, such as 

in the case of the EDTA method [13], and disproportionate protein yield, such as in 

cation exchange resin extractions [12]. However, methodologies that do not alter EPS 

composition do exist. Ultrasound and centrifugation methods do not alter EPS functional 

groups, and additionally, do not rely on the addition or removal of outside compounds to 

the biofilm undergoing extraction [12]. 

Complementing the study of PN/PS, confocal laser scanning microscopy (CLSM) 

is a technique that can be used to directly visualize EPS on by tagging protein and 

polysaccharide portions with fluorescent markers [14]. CLSM can be used to create a 3D 

image of tagged polymers on a membrane surface, allowing for investigation of their 

relative prevalence and spatial distribution. 

Fouling of ceramic membranes has not been studied as widely as polymeric 

membranes, and given the large differences in operating conditions between the two, it is 

important to expand the study of foulants across the range of operating conditions. This 

work explores the effects of solution pH on fouling and the removal of EPS proteins and 

polysaccharides from fouled ceramic membranes. EPS extracted from biofilms was 

filtered through Whatman Anodisc ceramic microfiltration membranes, pore size 0.2 µm, 

under pH 3.5, 6.9, and 9.5 conditions, in a dead-end filtration setup, resulting in the 

formation of fouling layers. An ultrasound bath applied shearing forces to the EPS to 

induce partial removal of the fouling layer. CLSM was used to image the fouling layers, 

followed by MATLAB image analysis to determine the ratio of protein probe intensity to 
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polysaccharide probe intensity. The objective of the analysis was to determine at which 

pH conditions a ceramic membrane system may operate in order to enhance filtration 

rates and ultrasonic cleaning for EPS-fouled membranes. 

The following section, Methodology, details experimental methods. It includes all 

chemical analytical methods employed, methods for taking filtrations measurements, and 

microscopy procedures. The Results section lays out the results of assays and filtration 

measurements for EPS solution pHs of 3.5, 6.9, and 9.5. Additionally, this section details 

the analysis of confocal imaging data and presents results. The Discussion section draws 

upon data presented in Results to interpret data, compare it with findings in the literature, 

expresses limitations in the study’s findings, and draws conclusions. The Conclusion 

section summarizes experimental results and outlines their implications to future 

research. Attached are also all references to all cited works, as well as Appendix A, 

image analysis histograms, and Appendix B, image analysis MATLAB scripts. 
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Chapter 2: Materials and Methods 

EPS sampling and extraction 

Biofilms used in EPS extractions were obtained from Jackson Pike Wastewater 

Treatment plant on 2015/07/08 and 2016/01/27. Using a plastic sampling cup, biofilms 

adhering to the walls of the final clarifier were collected. Furthermore, a sample of final 

clarifier water was also collected into a 100 mL Erlenmeyer flask. The biofilm samples 

were then transferred to 1 L glass beakers, which were sealed with Parafilm and 

refrigerated at 4 C for no more than 5 days. The final clarifier water sample was 

immediately tested for dissolved oxygen content, conductivity, and pH, before storage at 

4 C. 

The biofilms were then subjected to the ultrasound EPS extraction procedure 

similar to that reported by D’Abzac et al.  Since the ultrasound reactor is not 

recommended for use with solids, biofilms were first diluted using DI water until they 

were fluid. The 2015 EPS was diluted to a final volume of 25% DI and 75% biofilm, 

while the 2016 EPS was diluted 50% with DI water. A Sorvall Legend RT centrifuge was 

turned on and allowed to come to 4 C. An ELAC Nautik USW 51 ultrasound transducer 

was attached to an ELAV Cesar RF Power Generator. The transducer and amplifier were 

set to generate ultrasound with a frequency of 20 kHz and an intensity of 300 W/L. The 

homogenized biofilm was transferred into the ultrasound reactor, where it was sonicated 

for one minute. Sonicated biofilm was transferred into six 15 mL centrifuge tubes, and 

immediately placed in the centrifuge. Centrifugation lasted for 20 minutes at 8000 G. The 
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supernatant containing the extracted EPS was then removed into a flask, and the pellet 

was discarded. To further clarify the EPS solution, the supernatant was centrifuged once 

more for 20 minutes at 8000 G. The extracted EPS solution was then stored in a 500 mL 

stock bottle at -3 C. 

 

EPS Characterization 

Extracted EPS were characterized by gravimetric analysis, protein content, and 

polysaccharide content. EPS and final clarifier water also underwent ICP analysis for 

calcium content.  

 

Gravimetric analysis 

The mass of an aluminum weigh boat was recorded, and EPS solution was pipetted into 

it. The dish was then reweighed. An oven was set to 105 C and the weigh dish containing 

the EPS was placed in the oven. After 24 hours had passed, the dish was placed in a 

desiccator and final weight was recorded. 

 

Protein assay 

The Pierce BCA Protein Assay Kit (Thermo Scientific, lot PA199207) was used to 

determine the protein content of the EPS solution. A stock solution of 200 mg/L bovine 

serum albumin was prepared from the provided ampules. An Isotemp 1013S incubator 

bath was set to 37 C and allowed to come to temperature. Standards covering the range of 

0 mg/L to 200 mg/L were prepared by diluting stock solution with DI water to a final 

volume of 100 µL. Replicates of 100 µL EPS solution were measured into test tubes. The 

working reagent mixture was then added to the test tubes which were then vortexed. The 
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vortexed tubes were incubated for 30 minutes. Once 30 minutes were over, the test tubes 

were allowed to cool. Test tube contents were placed in cuvettes, and spectrophotometer 

was blanked with DI water and a Thermo Scientific NanoDrop 2000c spectrophotometer 

measured the absorbance of each cuvette at 562 nm.  

 

Polysaccharide assay 

The polysaccharide content of the EPS solution was measured using the anthrone method 

as follows. A 500 mg/L stock solution of D-glucose was first prepared. Glass test tubes 

were cleaned with soap and water and triple rinsed with DI water. Standards were 

prepared covering the range of 0 mg/L to 200 mg/L by diluting stock solution with DI 

water to a final volume of 600 µL. Replicates of 600 µL of EPS solution were also placed 

in glass test tubes. All test tubes were then placed on ice. 100 mg of anthrone was mixed 

with 2.5 mL of ethanol in a 100 mL Erlenmeyer flask. A stir bar was placed in the flask, 

and 47.5 mL of 75% sulfuric acid was added to the flask. The stir bar mixed the solution 

until all anthrone dissolved.  

 Working in a fume hood, a 1 L water bath was brought to a boil using a hot plate. 

3 mL of anthrone solution was pipetted into each glass test tube. Test tubes were capped 

with Parafilm and pierced with a pin to prevent pressure buildup. Test tubes were swirled 

and placed in the boiling water bath. After 10 minutes of boiling, the tubes were removed 

and placed back into the ice bath until cool. The spectrophotometer was blanked with DI 

water and set to measure absorbance at 625 nm. The contents of each glass test tube were 

then pipetted into a cuvette and absorbance was measured by the spectrophotometer. 

 

ICP-AES analysis 
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A Vista AX CCD Simultaneous ICP-AES was used to quantify elemental calcium 

concentrations of extracted EPS and clarifier samples. 12 mL falcon tubes were filled to 

the 10 mL mark with either calcium standards, diluted EPS, or diluted clarifier water. The 

argon tube furnace was fed with 2% nitric acid into the nebulizer, and emission for 

calcium was measured at wavelengths of 317.933, 318.127, and 396.847 nm. Blanks 

were run between measurement of standards and samples. Emission values were fitted to 

a standard curve with standards ranging from 0 to 25 mg/L, and calcium content was 

determined. 

 

Membrane Fouling and Ultrasonic Cleaning 

Two dead-end filtration apparatuses were first constructed. To construct an apparatus, a 

60 mL syringe was fitted with a rubber stopper instead of a plunger, which was then 

glued in place. A 18 gauge syringe needle was then inserted through the rubber stopper. 

A 25 mm filter holder containing a membrane could then be attached to the Luer Lock 

end of the filtration apparatus, while a gas line for pressurization could be attached to the 

Luer Lock end of the needle. 

To conduct the foulings and collect flux measurements, an Orion 5 Star  (Thermo 

Scientific) conductivity meter and pH probe was calibrated using pH 4, 7 and 10 

standards. The dead-end fouling apparatus was attached to a ring stand. A gas line 

connected the apparatus to a tank of nitrogen gas. 1 L of CaCl2 stock solution was 

prepared and its conductivity adjusted to 950 µS/cm using KCl. For each pH, 3.5, 6.9, 

and 9.5, 100 mL of stock solution was dispensed into a 500 mL Erlenmeyer flask. If the 

filtration trial was to test clean water flux, no EPS was added. However, if the filtration 

trial was to test EPS flux, at this point 7.2 mL of the EPS solution which was extracted 
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during summer 2015 was added to the Erlenmeyer flask. To each Erlenmeyer flask was 

added a stir bar and the pH probe. Each flask was sparged with nitrogen, and dilute 

NaOH or HCl was used to adjust the pH of the solution. Simultaneously, forceps placed a 

0.2 µm Whatman Anodisc membrane filter into a 25 mm filter holder. A gas line was 

connected to the filtration apparatus and turned on. For 2 minutes, nitrogen gas was 

allowed to flow through the apparatus, and then the gas was shut off and disconnected.  

Once the pH was stable and at least 10 minutes of sparging had occurred, 30 mL 

of the pH-adjusted solution was syringed into the filtration apparatus, and the membrane-

containing filter holder was attached to the outlet of the apparatus. A depressurized gas 

line was then connected to the gas inlet of the apparatus. Two graduated cylinders, one 

for each filtration apparatus, were filled to the 2.5 mL mark with DI water and positioned 

below the apparatus outlet. The gas pressure was recorded. The gas lines to the apparatus 

were then pressurized, and flux measurements were taken by recording the volume of the 

graduated cylinder. Once the graduated cylinder volume reached 16 mL the gas was shut 

off, and the gas lines were depressurized. The filter holder was disconnected, and a 50 

mL beaker collected unfiltered solution remaining in the apparatus. The pH and 

conductivity of the unfiltered solution was then measured by the probes.  

EPS-fouled membranes were then sonicated under the same pH conditions that 

they were fouled. 500 mL of 10
-3

 M KCl was prepared in a beaker and adjusted to the 

correct pH with dilute NaOH or HCl. This solution was then loaded into the reactor 

chamber of a 620 kHz ELAC Nautik USW 51  sonicator. The frequency generator and 

amplifier were set to 60 W and 620 kHz, respectively. The fouled membrane was then 

removed from its filter holder and placed into a sonicator basket face-down. The 
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sonicator basket was then lowered into the sonicator until it was 10.5 cm away from the 

transducer membrane. The sonicator was then turned on for a duration of 0, 2, or 4 

seconds. After sonication was finished, the membrane was removed from the bath and 

placed face-up on a microscope slide which was labeled with its pH and sonication 

duration. The microscope slide was then placed into a petri dish and covered. Membranes 

were then refrigerated at 4 C. 

 

 

 

Figure 1. Cartoon depicting appearance of membrane before and after sonication with 

foulant represented in blue. 

 

 

Staining and microscopy 

Membranes were then stained with fluorescent probes according to the procedure 

outlined in Chen et al. (2006). In a dim room, 20 µM SYTO 63 was added dropwise to 

each membrane until each membrane surface was covered. The membranes, in their petri 

dishes, were then stacked, covered with tinfoil, and placed on a shaker table for 30 

minutes at 20 rpm. The membranes were then unstacked and dipped in fresh solutions of 
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phosphate-buffered saline. This procedure was repeated until each membrane has also 

been covered with 0.1 M bicarbonate buffer, 10 g/L FITC, 0.2 g/L concanavalin A, and 

calcofluor white. After the final rinsing with phosphate-buffered saline, the membranes 

were stored at -80 C. 

Frozen membranes were packed into a cooler and transported to the Olympus FV 

1000 confocal laser scanning microscope. For imaging of SYTO 63, the CLSM excited at 

633 nm and emission was detected at 650 – 700 nm. FITC was excited at 488 nm and 

detected at 500 – 540 nm. Calcofluor white was excited at 400 nm and detected at 410 – 

488 nm. Concanavalin A was excited at 543 nm and detected at 550 – 600 nm. Either 

three or four images measuring 1.27 mm were taken of each membrane. Each image 

contained between 4 and 11 z slices, which were spaced either 5 or 10 µm apart. Imaged 

regions were selected for imaging based on the presence of foulant on the surface. Image 

spacing and image number were chosen such that a full profile of the fouling layer was 

captured. Laser intensity was chosen for each image to produce the clearest visualization 

of the fouling layer without introducing noise or bleaching. Images were stored on a flash 

drive as .oib files. 
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Chapter 3: Results 

Analysis of EPS 

Two solutions of EPS were extracted from biofilms, one collected during summer 2015 

and the other during winter 2016. The solution containing the extracted EPS was 

analyzed for total solids concentration, protein concentration, polysaccharide 

concentration, and calcium concentration. Additionally, the calcium concentration of the 

final clarifier was determined. A comparison of these parameters for both EPS extraction 

dates can be seen in Table 1 below. The protein to polysaccharide ratio of the EPS 

solution was determined by dividing the protein content by the polysaccharide content. 

Propagated error was factored into calculations for total solids and protein to 

polysaccharide ratio. ICP results for clarifier calcium concentration were used to adjust 

the Ca
2+

 content of fouling stock solutions to levels with which the EPS were in 

equilibrium before extraction. 

 

EPS Flux 

Both EPS extracts were individually used to foul membranes. As fouling progressed, the 

volume of foulant solution filtered was recorded. Plots of volume filtered over time for 

each solution pH are shown in Figure 2. Volume measurements were not always taken at 

the same time. For example, measurements may have been taken at 1.5 and 2.5 minutes, 

but not at 2 minutes. In these cases, bracketing volume measurements and times were 
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used to linearly interpolate a volume measurement. To produce each plot, volume 

measurements were averaged and the standard deviation was calculated.  

For both EPS solutions, the pH 3.5 solution filtered the most foulant solution in a 

10 minute span. In the case of the 2015 EPS, the pH 3.5 fouling solutions filtered a mean 

volume of 12.6 mL in ten minutes whereas the pH 6.9 and pH 9.5 solutions filtered a 

mean volumes of 8.9 and 9.4 mL, respectively. In contrast, the 2016 EPS fouling 

solutions filtered faster overall. Variability in final volume after 10 minutes was much 

lower in the 2016 EPS. The pH 3.5 fouling solutions filtered 12.7 mL in ten minutes and 

the pH 6.9 and 9.5 fouling solutions filtered 12.0 and 11.5 mL, respectively. To show that 

fouling solution filtration rates were dependent on pH dependent properties of EPS, 

filtrations were conducted using a fouling solution containing no EPS, adjusted to the 

same pH and conductivity as the other fouling trials. Table 2 shows volume of EPS-free 

fouling stock filtered using a feed pressure of 30 psi.  
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Table 1. Characteristics of extracted EPS as determined by gravimetric analysis, Pierce 

BCA Protein Assay, the anthrone method for polysaccharide determination, and ICP. 

Date of EPS extraction 2015/07/08 2016/01/27 

Total solids (g/L) 1.170 +/- 0.001 0.70 +/- 0.05 

Protein content (mg/L) 320 +/- 30 103 +/- 1 

Polysaccharide content (mg/L) 60 +/- 10 46.3 +/- 0.5 

Protein to polysaccharide ratio 5.3 +/- 0.3 2.22 +/- 0.01 

Clarifier calcium 

concentration (mg/L) 

61.1 +/- 0.8 77.4 +/- 0.3 

Extracted EPS solution 

calcium concentration (mg/L) 

75 +/- 1 40.6 +/- 0.3 

 

 

Table 2. Clean water flux of unfouled membranes for three solution pH values. 

pH Flux of 285.4 mg/L 

CaCl2*2H20 stock 

solution (mL/s) 

3.5 0.870 +/- 0.004 

6.9 0.89 +/- 0.01 

9.5 0.826 +/- 0.007 
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Figure 2. Volumes of EPS solution filtered over time for three pH values. Panel A shows 

the filtration of the 2015 EPS, the membranes used for which then went on to CLSM 

imaging. Panel B depicts the filtration of the 2016 EPS. 
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MATLAB Analysis of Confocal Microscopy 

Confocal images were analyzed using MATLAB. Fiji was used to assign channel 1, 

calcofluor white, to the color red, and channel 2, FITC, to the color green. Channels 3 

and 4 were empty for most images, and were not analyzed. The images were then 

exported in BMP format to MATLAB. All scripts used for image analysis used can be 

found in Appendix B.  ImageFlattener.mat summed image intensity across the z-axis of 

each image stack, creating a 2D composite of each image. When called by 

imageAnalysis.mat and brokenImageAnalysis.mat, the function imageReader.mat then 

stored BMP image data as a .mat file. DataExpouser.mat loaded each .mat file and 

created a histogram for channel 1 and channel 2 by sorting pixel intensities for each 

channel into bins of width 10. From this data a histogram was created for each image, 

such as Figure 3 below. Histograms of all processed images can be found in Appendix A. 

Additionally, dataExposuer.mat calculated the 50
th

 percentile pixel intensity for each 

distribution. 
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Figure 3. Typical distribution of proteins and polysaccharides. This image was taken of a 

membrane fouled and cleaned at pH 3.5, with sonication duration of 2 seconds. Its 50
th

 

percentile protein intensity is 380, its 50
th

 percentile polysaccharide intensity is 90, and 

its 50
th

 percentile PN/PS intensity ratio is therefore 4.2. 

 

 

Image histograms revealed anomalies with a number of images, such as no 

distribution existing for one or both channels. For an image to be eligible for discarding, 

at least 10% or more of pixels must have exhibited zero intensity for proteins or 

polysaccharides, or the image must have exhibited a 90
th

 percentile intensity of 10 or less 
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for proteins or polysaccharides. As a result, 14 images that were candidates for discarding 

were detected. Seven images displayed streaks instead of fouling layers and were 

discarded. Two images were blank upon inspection and were discarded. Four images 

showed only one type of stain and were discarded. In total, 14 images were discarded and 

27 proceeded through the remainder of analysis. The function validImage.mat was used 

to determine if images met these criteria. 

The final script to be called, statisticalAnalysis.mat, then divided the 50
th

 percentile 

intensity of channel 2 (proteins) by the 50
th

 percentile intensity of channel 1 

(polysaccharides) to obtain a ratio that represents the relative, median prevalence of each 

channel on the image termed from hereon as the PN/PS intensity ratio. The data were 

then exported to Microsoft Excel, where, for each pH and sonication-duration pairing, 

PN/PS intensity ratios were calculated. To represent variance, a standard deviation was 

calculated for each combination of solution pH and sonication duration. The number of 

membranes and the number of images used in calculating each average is shown in Table 

3. These averages and variances are shown in Figure 4. EPS filtered at pH 3.5 and 9.5 

exhibited decreased averages in PN/PS intensity ratio with increased sonication duration, 

whereas the pH 6.9 trial exhibited mixed results with high variability. Variance within 

trials was high, visible by the large error bars associated with calculated PN/PS intensity 

ratios. 
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Table 3. Number of images of membranes used in developing each 50
th

 percentile PN/PS 

intensity and corresponding standard deviations. 

pH 3 6 9 

sonication duration (s) 0 2 4 0 2 4 0 2 

Number of images 

analyzed 

4 2 2 4 4 4 4 3 

Number of membranes 

represented by analysis 

2 1 1 2 2 1 1 1 

 

 

 

Figure 4. 50
th

 percentile PN/PS intensity ratios for each combination of pH and 

sonication duration. No data exists for pH 9.5 with duration of 4 seconds because images 

met discard criteria. 
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Chapter 4: Discussion 

 

Effects of pH and Sonication Duration on Fouling Layer PN/PS 

All imaged membranes were fouled using the EPS extracted in 2015. Sonicated 

membranes exhibited large swaths of area in which neither proteins nor polysaccharides 

were present, as represented by Figure 1, and images were only taken in places where a 

fouling layer was still present.  

For solution pH values of 3.5 and 9.5, images of the fouling layer after 

ultrasonication exhibited lower average PN/PS intensity than images taken of unsonicated 

membranes (Figure 4). Standard deviations are high for all image trials, with the 

exception of the pH 3.5, 4 second sonication. These results suggest two trends regarding 

EPS fouling layers. First, they suggest that the fouling layers do not have a homogenous 

PN/PS. Rather, fouling layers are highly heterogeneous with respect to PN/PS, which 

varies greatly from area to area. Second, the shifts from high PN/PS intensity to lower 

PN/PS with increased sonication suggests that regions of fouling layers with high PN/PS 

were more likely to be removed by sonication for those pH values. This implies that for 

solution pH values of 3.5 and 9.5, low PN/PS regions were less likely to be removed 

during cleaning than high PN/PS regions, resulting in the sonicated fouling layers 

exhibiting lower average PN/PS intensity ratios. Corroborating these results, a study 

using QCMD analysis observed that EPS adherence to PVDF ultrafiltration membranes 

increased with lower PN/PS [4]. Furthermore, the reduction in this variance displayed by 
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sonicated membranes at pH 3.5 suggests that a more narrow range of smaller PN/PS 

values were more likely to resist cleaning than the wide range of PN/PS values originally 

present on unsonicated membranes. 

 The preferential removal of high PN/PS regions of fouling layers may be 

explained by several factors. The protein portion of EPS has been shown to be 

hydrophobic [8], and therefore does not bind readily to hydrophilic alumina membranes. 

Surface charge interactions that mediate EPS electrostatic adhesion may also be a 

contributing factor to these patterns. Whatman Anodisc alumina membranes have been 

shown to have a point of zero charge around pH 8 [15]. Alumina membrane surfaces are 

therefore positively charged at solution pH values below 8 and negatively charged above 

pH 8. Under the conditions of this experiment, the alumina membrane had the most 

positive charge at pH 3.5. Since EPS with higher polysaccharide content have a more 

negative surface charge [8], EPS with low PN/PS will experience greater electrostatic 

attraction to alumina at pH 3.5 than EPS with high PN/PS. The protein portions of EPS 

are amino-dense, which accounts for higher hydrophobicity relative to the more polar, 

acidic groups which characterize the non-protein portion [8]. As a result, high PN/PS 

EPS will be more susceptible to removal through ultrasonic cleaning. The fact that PN/PS 

decreases with increased sonication at pH 3.5 conditions is reflective of the greater 

strength of attraction attributed to polysaccharides, especially since proteins have weak 

positive correlation with EPS surface charge [8] which would cause them to repel the 

membrane at pH values lower than 8. 

 The similar trend at pH 9.5 is harder to account for. At this pH, polysaccharide-

associated acidic groups are deprotonated, and the membrane surface charge is negative. 
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However, while low PN/PS EPS may be electrostatically more repulsive at high pH than 

at low pH, this does not necessarily mean that they are more likely to be removed than 

high PN/PS EPS. To speculate, if protein hydrophobicity caused greater detachment from 

the membrane surface than the electrostatic repulsion of low PN/PS regions, then high 

PN/PS regions may be preferentially removed. However, more about the surface 

interactions of the specific EPS, such as the isoelectric point of the protein and 

polysaccharide portions of the EPS, would have to be known to attest for the presence of 

this trend with credence. 

 Overall, the pH 6.9 trials did not indicate a preferential removal of high or low 

PN/PS EPS. Inconsistent averages prevent the determination of anything but vague trends 

despite these trials being represented by greatest number of images and membranes 

(Table 3). A trend that generally exists for the pH 6.9 trials is high variance in PN/PS. 

High variance could mean that neither high PN/PS nor low PN/PS EPS are more likely to 

be removed, as the same high variance as seen in the unsonicated membranes remains 

present for all sonication durations. A possible explanation for this is that the EPS and the 

membrane surface are both closer to their isoelectric point, which would cause 

electrostatic attractions and repulsions to diminish. As a result, non-pH-dependent 

adherence mechanisms could take over. This is supported by reports that EPS isoelectric 

points are proximal to the EPS’s environmental pH [11], pH 6.9 being the environmental 

pH level of EPS used in CLSM imaging. 

 The high variance of the imaging data, however, limits drawing solid conclusions. 

PN/PS has been shown to be highly variant on a membrane surface, and a large number 

of images are required to confidently state the means of data with such high variance. 
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Averages between membranes that underwent the same treatment had very high standard 

deviations, and so the imaging conducted should ideally be expanded until the number of 

samples can provide higher statistical confidence in reported average PN/PS. Currently, 

PN/PS outliers had a high propensity to affect averages due to small sample size.  

To manage controllable sources of variability in imaging results, future procedures 

should vortex the fouling stock to ensure that EPS is fully homogenous before fouling 

takes place. Additionally, the staining procedure used by Chen et al. [14] requires dipping 

membranes repeatedly in phosphate buffered saline, which may remove foulant from 

membrane surfaces. Freezing membranes should not be practiced if spatial information 

about the fouling layer is to be conserved for imaging, since cold temperatures will warp 

the membrane, and the formation of ice crystals will dislocate the foulant. Finally, surface 

charge interactions could be commented on in more detail if points of zero charge of EPS 

proteins and polysaccharides were determined. 

Nevertheless, it does appear that there is a trend toward lower PN/PS intensity regions 

of fouling layers remaining on alumina membranes when subject to cleaning at pH 

conditions of 3.5 and 9.5. This result implies that ceramic membranes that undergo 

repeated cycling of ultrasonic cleaning under acidic conditions may build up low PN/PS 

EPS during the initial stages of fouling.  

 

pH Effects on Membrane Flux 

The faster filtration 2015 EPS solution, as seen in Figure 2, may have been caused by a 

lack of pore blocking at a solution pH of 3.5. At low pHs, EPS are reported to de-swell 

from a network of homogenous density into a heterogeneous network of small, dense 

domains [11]. The result could be that large EPS aggregates present in low-pH solution 
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are not similar enough in size to the 0.2 µm pores to cause blockage. This is exemplified 

by the case of an EPS which fouled a membrane of 1.0 µm pore size faster than a 0.5 µm 

membrane because the size distribution of the EPS more closely matched the diameter of 

the pores [16]. EPS also have decreased surface at low pH conditions [7] resulting in 

reduced availability for interaction with membrane pore walls suggested by Sweity et al. 

[10].  

Adsorption mediated by electrostatic attraction between the EPS and the 

membrane surface may also be responsible for the increased filtration at low pH. At a pH 

as low as 3.5, the EPS will likely be below its point of zero charge, rendering its surface 

charge to be net positive like the surface of the alumina membrane. If this were the case, 

increased electrostatic repulsion between the two would have detracted from EPS 

adsorption inside membrane pores, resulting in less pore blockage and higher flux. While 

there may be similar repulsion at a high pH, a corresponding increase in flux was not 

observed. This may be due the compensating effects of EPS networks swelling and 

become more inflexible under high pH conditions, causing more obstruction to the 

membrane surface [10]. 

The 2015 EPS was observed to filter faster at pH 3.5 when compared to pH 6.9 

and 9.5. This trend was also observed for the 2016 EPS. However, in the case of the 2016 

EPS, such a high contrast between filtration rates was not present between filtrations at 

different pH conditions. Without knowing more about the specific differences between 

the two EPSs, it is hard to say why this might be. It is known, however, that the 2016 

EPS has a PN/PS of 2.22 whereas the 2015 EPS has a PN/PS of 5.3, calcium 

concentration also differs between the two EPSs, however, a better understanding of 
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these discrepancies in filterability necessitates gathering more detailed information about 

the two EPS solutions, such as point of zero of charge and molecular size distribution. 
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Chapter 5: Conclusion 

 

It was found that unsonicated fouling layers exhibit a wide range of PN/PS. For a pH of 

3.5, ultrasonicated fouling layers exhibited increased prevalence of areas with low 

PN/PS. It was proposed that these shifts were related to the hydrophobic character of the 

protein portion reducing the ability of high PN/PS regions to bind with the hydrophilic 

membrane surface. Additionally, relatively stronger electrostatic attraction of low PN/PS 

EPS to membrane surface resulted in cleaned membranes exhibiting lower PN/PS. As a 

result, repeated cleaning of ceramic membranes under acidic conditions could lead to 

buildup of low PN/PS EPS. Trends in EPS removal under pH conditions of 6.9 and 9.5 

were less clear.  

The comparison of two different EPS solutions showed that EPS of a low pH 

tends to filter faster, which was attributed to the tendency of EPS to form dense domains 

under low pH conditions. This may have been caused by the tendency of EPS to form 

low-surface area, dense aggregates under low pH condition, allowing EPS to pass 

through pores with reduced likelihood to obstruct pores. Surface charge effects may also 

be a contributing factor, since both EPS and the membrane surface were below the point 

of zero charge at pH 3.5. 

Future imaging should incorporate a larger number of images to increase 

confidence in averages. Additionally, changes in the imaging procedure, such as avoiding 

repeated dipping in phosphate buffered saline and freezing steps, would improve the 
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quality of imaging results. Quantification of parameters related to adhesion, such as EPS 

surface charge and molecular size, should be incorporated in adherence related 

experiments.  
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Appendix A: Imaging Histograms 

 

 

 

 

 



 

A2 
 

 

Figure A.1. Image histograms used in final processing of confocal microscopy data. 
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Figure A.2. Image histograms used in final processing of confocal microscopy data 

continued from previous page. 
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Appendix B: Image Analysis Code 
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imageFlattener.mat 

 

function[flatRGB] = imageFlattener(imName) 
% ,z_step_microns,number_z_slices,micron_width_and_height,imageName 
% create function that inputs image data files & outputs image 

information  
load(imName); 

  
%Operate on the image data 
%flatten RGB 

  

 

 

imageReader.mat 

 

function  

imageReader(image_name_base,z_step_microns,number_z_slices,micron_width

_and_height) 

  

  
%use imread function to load the images. Note: file to be read must be 

in 
%MATLAB's current folder, or added to path. (click and drag the folder 

into 
%the 'current folder' column, right click, select 'add to path -> 

current folder' 

  
%IMPORTANT: Polysaccharides must be colored RED, proteins must be 

colored 
%GREEN (referenced by variable z value. 1 == poly and 2 == protein), 

for a BMP image file. 

  
%Current naming convention is (pH series number)-(trial letter & 

duplicate 
%#)-(image number 0)(slice number [loops with %d] ).bmp 

  
total_image_thickness= z_step_microns * (number_z_slices - 1); 

%calculates the total thickness of the membrane image 

  
%RGB = zeros(512,512,3,number_z_slices); 

  
for z = 1:2 % z value determines color analysed during one cycle 

     
for imgNumber = 0:(number_z_slices-1) %set to number of slices in stack 

  
if     (number_z_slices >= 11) && (imgNumber <10) %takes care of 

possibility of more than 10 slices --> extra zero needed in naming 

convention. 
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imageName = sprintf('%s0%d.bmp',image_name_base,imgNumber) %constant 

filename with number ammendment 
else  
imageName = sprintf('%s%d.bmp',image_name_base,imgNumber) %constant 

filename with number ammendment 
end 

  
%RGB_matrix =imread(imageName); 
RGB(:,:,:,imgNumber+1)=imread(imageName); %MATLAB reads image into the 

variable space using the image's name... imageName 

  
end %close z level loop 

  
end %close color loop 

  

  

  

  
save_name = strcat('2run',image_name_base,'.mat'); 
save(save_name) 

 

 

imageAnalysis.mat 

% new image analysis code using function imageReader. 
clc  
clearvars 
close all 

  
%imageReader function has fields imageReader(imagename,slice thickness, 
%number of slices, surface area in sq mm) 

  
% reads BMP images and calls function 'imageReader' to put them into 

.mat 
% files entitled with prefix '2run'. This function also stores the 

number 
% of slices, the slice thickness, and the xy dimensions of the image. 

  

  
imageReader('3-A1-1',10,8,1272.3) 
imageReader('3-A1-2',10,10,1272.3) 
imageReader('3-A1-3',5,10,1272.3) 

  

  
imageReader('3-A2-1',10,8,1272.3) 
imageReader('3-A2-2',10,8,1272.3) 
imageReader('3-A2-3',10,8,1272.3) 
imageReader('3-A2-4',10,8,1272.3) 
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%imageReader('3-B1-1',???,???,1272.3) %check fiji to get value 
%imageReader('3-B1-2',10,7,1272.3) %corrupted bmp image 
%imageReader('3-B1-3',10,9,1272.3) 
imageReader('3-B1-4',10,8,1272.3) 

  

  
imageReader('3-B2-1',10,7,1272.3) 
imageReader('3-B2-2',10,7,1272.3) 
imageReader('3-B2-3',10,8,1272.3) 
%imageReader('3-B2-4',???,???,1272.3) 

  

  
%imageReader('3-C1-1',5,12,1272.3) %corrupted bmp image 
%imageReader('3-C1-2',??,??,1272.3)%check fiji to get value 
%imageReader('3-C1-3',?,??,1272.3)%check fiji to get value 

  

  
imageReader('3-C2-1',10,8,1272.3) 
imageReader('3-C2-2',10,9,1272.3) 
imageReader('3-C2-3',10,8,1272.3) 
imageReader('3-C2-4',10,7,1272.3) 

  

  
imageReader('3-D1-1',5,9,1272.3) 
%imageReader('3-D1-2',??,??,1272.3) %check fiji to get value 
imageReader('3-D1-3',5,9,1272.3) 
imageReader('3-D1-4',5,11,1272.3) 

  

  
%imageReader('3-D2-1',??,??,1272.3)%check fiji to get value 
%imageReader('3-D2-2',10,8,1272.3)%corrupted bmp image 
imageReader('3-D2-3',10,7,1272.3) 
%imageReader('3-D2-4',10,7,1272.3)%corrupted bmp image 

  

  
imageReader('6-A1-1',10,8,1272.3) 
imageReader('6-A1-2',10,8,1272.3) 
imageReader('6-A1-3',10,8,1272.3) 
imageReader('6-A1-4',10,8,1272.3) 

  

  
imageReader('6-A2-1',10,6,1272.3) 
imageReader('6-A2-2',10,5,1272.3) 
imageReader('6-A2-3',10,5,1272.3) 
imageReader('6-A2-4',10,6,1272.3) 

  

  
imageReader('6-B2-1',10,6,1272.3) 
imageReader('6-B2-2',10,8,1272.3) 
imageReader('6-B2-3',10,6,1272.3) 
%imageReader('6-B2-4',??,??,1272.3)%check fiji to get value 



 
 

B5 
 

  

  
imageReader('6-C2-1',10,7,1273.3) 
%imageReader('6-C2-2',??,??,1273.3)%check fiji to get value 
%imageReader('6-C2-3',??,??,1273.3)%check fiji to get value 
%imageReader('6-C2-4',??,??,1273.3)%check fiji to get value 

  

  
%imageReader('6-D2-1',10,9,1273.3)%corrupted bmp image 
%imageReader('6-D2-2',??,??,1273.3)%check fiji to get value 
%imageReader('6-D2-3',10,8,1273.3)%corrupted bmp image 
imageReader('6-D2-4',10,8,1273.3) 

  

  
imageReader('9-A1-1',5,7,1273.3) 
%imageReader('9-A1-2',5,8,1273.3)%corrupted bmp image 
imageReader('9-A1-3',5,13,1273.3) 
%imageReader('9-A1-4',??,??,1273.3)%check fiji to get value 

  

  
%imageReader('9-B1-1',10,8,1273.3)%corrupted bmp image 
imageReader('9-B1-2',5,9,1273.3) 
%imageReader('9-B1-3',5,9,1273.3)%check fiji to get value 
%imageReader('9-B1-4',5,8,1273.3)%corrupted bmp image 

  

  
imageReader('9-D1-1',10,10,1273.3) 
imageReader('9-D1-2',10,8,1273.3) 
imageReader('9-D1-3',10,9,1273.3) 

  
  

 

  

  

brokenImageAnalysis.mat 
 

% CORRUPTED IMAGE READER 
%read decorrupted image files 

  
clc 
clearvars 
close all 

  
imageReader('3-B1-1',10,9,1272.3) %check fiji to get value 
imageReader('3-B1-2',10,7,1272.3) %corrupted bmp image 
%imageReader('3-B1-3',10,9,1272.3) 

  
imageReader('3-B2-4',10,7,1272.3) 
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imageReader('3-C1-1',5,12,1272.3) %corrupted bmp image 
imageReader('3-C1-2',5,11,1272.3)%check fiji to get value 
imageReader('3-C1-3',10,7,1272.3)%check fiji to get value 

  
imageReader('3-D1-2',10,11,1272.3) %check fiji to get value 

  

  

  
imageReader('3-D2-1',10,9,1272.3)%check fiji to get value 
imageReader('3-D2-2',10,8,1272.3)%corrupted bmp image 
imageReader('3-D2-4',10,7,1272.3)%corrupted bmp image 

  
imageReader('6-B2-4',10,8,1272.3)%check fiji to get value 

  

  
imageReader('6-C2-2',10,9,1273.3)%check fiji to get value 
%imageReader('6-C2-3',??,??,1273.3)%check fiji to get value 
imageReader('6-C2-4',10,8,1273.3)%check fiji to get value 

  

  

  
imageReader('6-D2-1',10,9,1273.3)%corrupted bmp image 
imageReader('6-D2-2',10,9,1273.3)%check fiji to get value 
imageReader('6-D2-3',10,8,1273.3)%corrupted bmp image 

  

  
imageReader('9-A1-2',5,8,1273.3)%corrupted bmp image 
imageReader('9-A1-4',5,16,1273.3)%check fiji to get value 

  

  
imageReader('9-B1-1',10,8,1273.3)%corrupted bmp image 
imageReader('9-B1-3',5,7,1273.3)%check fiji to get value 
disp('note: 9B13 acutally has 9 layers not 7') 
imageReader('9-B1-4',5,8,1273.3)%corrupted bmp image 

  
disp('finished. 3B13 not read.') 

 

 

 

dataExpouser.mat 

%run TrialFileProcessor in loop for all imName 
% calls functions to do stat analysis 
clc 
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clearvars 
close all 

 
%cycle through all possible combinations of image name mat files. 
%check to see if the mat file is present in directory. 
%if so, load the file's info. 
%use the file info to get the imagenamebase.mat's info loaded into 

local variablespace. 
%use another loop to call functions to analyse the local data 

  

 
load('valid_images.mat','valid*'); 

  
sub_i = 0; 

  
savefilecounter   = 0;%used to count number of image files that are 

successfully named by the loop 
iteration_counter = 0; %counts number of times that the whole loop 

iterates. used to index imagenamebases by single number 

  
name_matrix=char(zeros(96,14)); 
discards = valid_image_vector; 
%discards = [1,9,10,12,17,19,23,25,26,35,37,39,39,40,45,48,56]; 

%indexed by iteration_counter 

  
%for making grouped subplots of trials by pH and sonciation duration 
subplotIndex=0; 

  
for pH = ['3','6','9'] 
    for membrane = ['A','B','C','D'] 
        for duplicate = ['1','2'] 
            for imageStack = ['1','2','3','4'] 

         
iteration_counter=iteration_counter+1;                 

      
discardTruth = iteration_counter == discards; 
VALID = 0; 
for discardCount = 1:1:length(discardTruth) 
    if ((discardTruth(discardCount) == 1) && (1 ~= ((pH =='3' )&& 

(duplicate =='2')))) || ( iteration_counter == 1)  %also discard 3.5-X2 

due to sample mixup. Include reprehensible but must include 3A11 
        VALID = 1; 
    end 
end 

  
if (VALID == 1) 

  
%strcat the name together along with '2run' (name ensured to be unique 

due to existence of image 
%files as well as .mat files named by X-L#-# 

  
imagename = strcat('2run',pH,'-',membrane,duplicate,'-

',imageStack,'.mat'); 
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isThere = exist(imagename); %returns 2 if named object is in matlab 

path. returns zero if named object not in path 

  
name_matrix(iteration_counter,:)= imagename; 

  
%start of analysis 

  
if  isThere == 2 %perform desired operations on imagename.mat's 

contents 

   
    savefilecounter=savefilecounter+1;% counts number of successfully 

identified imagename.mat files 

    
    %call analysis functions 
    flatRGB(:,:,:,iteration_counter) = imageFlattener(imagename); 

  
    %use Sam's code, decoder, to store information about membrane pH/ 
    %sonication duration 

     
    [sonicationDuration(iteration_counter),trialpH(iteration_counter)] 

= decoder(imagename); 

  
    %categorize membrane. produce figure with all the histograms of 

trial 
    %included 

  
binWidth = 10; 
binMin=0; 
binMax=1500; 
binMax_DisplayOnly =1000; 

     

  

     
    %pH 3.5 son 0 
    if (sonicationDuration(iteration_counter) == 0) && 

(trialpH(iteration_counter) == 3.5) 
        trial_ID_from_itCount(iteration_counter) = 1; 

  
  %{       
subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
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%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 

  
%} 

  

  
    end 
    %pH 3.5 son 2 
    if (sonicationDuration(iteration_counter) == 2) && 

(trialpH(iteration_counter) == 3.5) 
        trial_ID_from_itCount(iteration_counter) = 2; 

         
   %{      
subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
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% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
       %}  

         
    end 
    %pH 3.5 son 4 
    if (sonicationDuration(iteration_counter) == 4) && 

(trialpH(iteration_counter) == 3.5) 
        trial_ID_from_itCount(iteration_counter) = 3; 
%{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 
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        %pH 6.9 son 0 
    if (sonicationDuration(iteration_counter) == 0) && 

(trialpH(iteration_counter) == 6.9) 
        trial_ID_from_itCount(iteration_counter) = 4; 
%{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 
    %pH 6.9 son 2 
    if (sonicationDuration(iteration_counter) == 2) && 

(trialpH(iteration_counter) == 6.9) 
        trial_ID_from_itCount(iteration_counter) = 5; 
%{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 



 
 

B12 
 

catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 
    %pH 6.9 son 4 
    if (sonicationDuration(iteration_counter) == 4) && 

(trialpH(iteration_counter) == 6.9) 
        trial_ID_from_itCount(iteration_counter) = 6; 
 %{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
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% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 

     
    %pH 9.5 son 0 
    if (sonicationDuration(iteration_counter) == 0) && 

(trialpH(iteration_counter) == 9.5) 
        trial_ID_from_itCount(iteration_counter) = 7; 
   %{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 
    %pH 9.5 son 2 
    if (sonicationDuration(iteration_counter) == 2) && 

(trialpH(iteration_counter) == 9.5) 
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        trial_ID_from_itCount(iteration_counter) = 8; 
 %{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 
    %pH 9.5 son 4 
    if (sonicationDuration(iteration_counter) == 4) && 

(trialpH(iteration_counter) == 9.5) 
        trial_ID_from_itCount(iteration_counter) = 9; 
  %{ 
        subplotIndex = subplotIndex+1 
subplot(2,3,subplotIndex) 

  
%catted(:,iteration_counter,1) = 

reshape(flatRGB(:,:,1,imageInQuestion),[512^2,1]);% reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_polys(:,iteration_counter) =catted; 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 
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hold on 
%catted(:,iteration_counter,2) = 

reshape(flatRGB(:,:,2,imageInQuestion),[512^2,1]); % reshape command 

takes first input and reorders it columnwise into the shape of second 

input. 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape 

command takes first input and reorders it columnwise into the shape of 

second input. 
catted_matrix_prots(:,iteration_counter) =catted; 
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
title(titleLabel) 
legend('Polysaccharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 
%} 
    end 

     
%select which images to analyse. flatRGB has 4th dimension which is 

indexed by index variable "iteration_counter" 
%imageInQuestion = iteration_counter; %analyses 3a12 3a13 3a21 

  
%set histogram bin with, the mix and max bins 
binWidth = 10; 
binMin=0; 
binMax=1400; 
binMax_DisplayOnly =1000; 

  
%figure 
sub_i = sub_i+1; 
subplot(6,5,sub_i) 
 

catted= reshape(flatRGB(:,:,1,iteration_counter),[512^2,1]);% reshape 

command  

 
flatHists_polys=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  

  

  
hold on 
catted = reshape(flatRGB(:,:,2,iteration_counter),[512^2,1]); % reshape  
flatHists_prots=histogram(catted,'BinWidth',binWidth,'BinLimits',[binMi

n,binMax]); 

  
% label the graph 
%title should include sonication duration, pH 

  
titleLabel = strcat(pH,'-',membrane,duplicate,'-',imageStack); 
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title(titleLabel) 
legend('Polysacharides','Proteins') 
ylabel('Number of pixels') 
xlabel('Pixel intensity') 

  
hold off 

  

  

 
total_polys = nnz(flatHists_polys.Data); % ? check 
total_prots = nnz(flatHists_prots.Data);  

  
total_poly_check(savefilecounter) = total_polys;  
total_prots_check(savefilecounter) = total_prots;  

  
%find intensity of 50 and 90 percentiles of CDF 

  
%for 50 percent: 
cumulated_polys=0; 
bin_number = 0; 
while cumulated_polys < .5*total_polys 

    
    bin_number = bin_number + 1; 

     
    cumulated_polys = cumulated_polys + 

flatHists_polys.Values(bin_number); %(bin intensity*no_in_bin) 
    cumulative_50_polys(iteration_counter) = binWidth*bin_number; 

     
end 

  
cumulated_prots=0; 
bin_number = 0; 
while cumulated_prots < .5*total_prots 

    
    bin_number = bin_number + 1; 

     
    cumulated_prots = cumulated_prots + ( 

flatHists_prots.Values(bin_number)); %(bin intensity*no_in_bin) 
    cumulative_50_prots(iteration_counter) = binWidth*bin_number; 

     
end 

  
% for 90% 
cumulated_polys=0; 
bin_number = 0; 
while cumulated_polys < .9*total_polys 

    
    bin_number = bin_number + 1; 

     
    cumulated_polys = cumulated_polys + ( 

flatHists_polys.Values(bin_number)); %(bin intensity*no_in_bin) 
    cumulative_90_polys(iteration_counter) = binWidth*bin_number; 
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end 

  
cumulated_prots=0; 
bin_number = 0; 
while (cumulated_prots < .9*total_prots) 

    
    bin_number = bin_number + 1; 
   % 

flatHist_Values_by_binNo(bin_number)=flatHists_prots.Values(bin_number)

; 

     

  

     
    cumulated_prots = cumulated_prots + 

(flatHists_prots.Values(bin_number)); %(bin intensity*no_in_bin) 
    cumulative_90_prots(iteration_counter) = binWidth*bin_number; 

     
end 

  

  
end  

  
end 

  
%loop terminates and starts over.             
            end      
         end 
    end 
end 

  

  

  
save('validImages_statisticalData_unweighted') 
disp('dataExpouser_unweighted has finished.') 

 

 

validImage.mat 

% determine discards rigorously. 
clearvars 
close all 
clc 

  
load('discard_info_Data_unweighted.mat'); 

  
%if poly or prot less than ten or image coverage less than 95% 

  
coverage_threshold = 512^2 * 0.90; % 90% coverage threshold 
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valid_image_no = 0; 

  
for it_count = 1:1:91 
        valid_image_no = valid_image_no + 1 

  
if (total_prots_check(it_count) >= coverage_threshold) && 

(total_poly_check(it_count) >= coverage_threshold) && 

(cumulative_90_polys(it_count) >= 20) && (cumulative_90_prots(it_count) 

>= 20) 

     

     
    valid_image_vector(valid_image_no) = valid_image_no; end 
end 

  
save('valid_images') 

 

 

 

statisticalAnalysis.mat 

% analyse statistical data 
clearvars 
clc 

  
load('statisticalData.mat'); %loads statistical data generated by 

version dataExpouser_2016_03_15.mat 

  
%sort the into matrices by pH and sonication duration 

  
%analyze the 3.5/0 membranes using matrix trial_was_3__0 

  
n = 0 

  
A = 0; 
B = 0; 
C = 0; 
D = 0; 
E = 0; 
F = 0; 
G = 0; 
H = 0; 
I = 0; 

  
for i = 1:1:length(cumulative_50_prots) 
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  %if discard(i) == 0 % stops processing of membranes indexed as 

discards 

     
    if (trial_was_3__0(i) ~= 0)  
    %tabulate important stats, compute PN/PS 
    A=A+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 

  
    stats_3_0(:,1,1,1,1,1,A) = 

[cumulative_50_prots(i),cumulative_50_polys(i),cumulative_90_prots(i),c

umulative_90_polys(i),PNPS_50(i),PNPS_90(i)]; 

     
    end 
    %{ 
    if trial_was_3__2(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 
    end 

     
    if trial_was_3__4(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 

    
    end     

     
        if trial_was_6__0(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 

  
    end 

     
    if trial_was_6__2(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 
    end 

     
    if trial_was_6__4(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 

    
    end     

     
        if trial_was_9__0(i) ~= 0 
    %tabulate important stats, compute PN/PS 
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    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 

  
    end 

     
    if trial_was_9__2(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 
    end 

     
    if trial_was_9__4(i) ~= 0 
    %tabulate important stats, compute PN/PS 
    n=n+1; 
    PNPS_50(i) =  cumulative_50_prots(i)/cumulative_50_polys(i); 
    PNPS_90(i) =  cumulative_90_prots(i)/cumulative_90_polys(i); 

    
    end     
    %} 

     
  %end 
end 

  

 
disp('statisticalData has finished') 

 


