A quasi-tree expansion of the Krushkal Polynomial

Loading...
Thumbnail Image

Date

2012-06

Journal Title

Journal ISSN

Volume Title

Publisher

The Ohio State University

Research Projects

Organizational Units

Journal Issue

Abstract

We introduce a generalization of the Krushkal polynomial to nonorientable surfaces, and prove that this polynomial has a natural quasi-tree expansion. This generalized Krushkal polynomial contains the Bollobas-Riordan polynomial of a (possibly nonorientable) ribbon graph as a specialization. The quasi-tree expansion proven here then extends the recent quasi-tree expansions of the Bollobas-Riordan polynomial deduced in the oriented case by A. Champanerkar et al. and in the more general unoriented case by E. Dewey and F. Vignes-Tourneret. The generalized Krushkal polynomial also contains the Las Vergnas polynomial of a cellulation of a surface as a specialization; we use this fact to deduce a quasi-tree expansion for the Las Vergnas polynomial.

Description

Keywords

Combinatorics, Topology

Citation