VAN VLECK TRANSFORMATION TO TENTH ORDER AS AN ALTERNATIVE TO THE CONTACT TRANSFORMATION

Loading...
Thumbnail Image

Date

1978

Journal Title

Journal ISSN

Volume Title

Publisher

Ohio State University

Research Projects

Organizational Units

Journal Issue

Abstract

Using a projector formulation 1,2,3,4 for the Van Vleck transform action, it is possible to go to tenth order without excessive effort. This is the κ-order needed to include sixth order centrifugal distortion in the effective vib-rot Hamiltonian for a state v. The Wilson-Howard Hamiltonian is first formulated as a Sum of ``scalar products”: \begin{equation} H=h_{2}{^{(0)}}+\kappa h_{3}{^{(0)}}+\kappa^{2}(h_{4}{^{(0)}}+h_{2}{^{(1)}}\cdot J{^{(1)}}+h_{0}{^{(2)}})+\kappa^{3}\ldots \end{equation} where hm(n)J(n) denotes fg..(hm(n))fg..JfJg (n indices). The effective Hamiltonian is written similarly as: \begin{eqnarray} A_{v}&=&a_{2}{^{(0)}}+\kappa^{2}(a_{4}{^{(0)}}+a_{2}{^{(1)}}\cdot J{^{(1)}}+a_{0}{^{(2)}}\cdot J{^{(2)}})+\kappa^{4}(a_{6}{^{(0)}}+a_{4}{^{(1)}}\cdot J{^{(1)}}+a_{2}{^{(2)}}\cdot J{^{(2)}})\nonumber\ &&+\kappa^{6}(..+a_{4}{^{(2)}}\cdot J{^{(2)}}+a_{2}{^{(3)}}\cdot J{^{(3)}}+a_{0}{^{(4)}}\cdot J{^{(4)}})\nonumber\ &&+ \kappa^{8}(\ldots +a_{2}{^{(4)}}\cdot J{^{(4)}}+a_{0}{^{(5)}}\cdot J{^{(5)}})\nonumber\ &&+\kappa{^{(10)}}(\ldots+ a_{0}{^{(6)}}\cdot J{^{(6)}})+.. \end{eqnarray} As an example (a2(2))fg has the form: (with symbols to be explained) \begin{equation} (a_{2}{^{(2)}}){fg}={x(h{2}{^{(1)}}){f}: (h{2}{^{(1)}}){g}x +2xh{3}{^{(0)}}: (h_{1} {^{(2)}}.){fg}x+x(h_{2}{^{(2)}}){fg}x}{H} \end{equation} This operator leads to α and q-constants.

Description

1 F. J{\o}rgensen and T. Pedersen, Mol. Phys. 27, 33 (1974). 2 F. J{\o}rgensen and T. Pedersen, Mol. Phys. 27, 959 (1974), 28, 599 (1974). 3 F. J{\o}rgensen and T. Pedersen, and A. Chedin, Mol. Phys. 30, 1377 (1975). 4 F. J{\o}rgensen, Mol. Phys. 29, 1137 (1975).""


Author Institution: Chemical Laboratory V, The H. C. {\O}rsted Institute

Keywords

Citation