Optimizing Reflection and Orientation for Bifacial Photovoltaic Modules
Loading...
Date
2009-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The Ohio State University
Abstract
Currently, the world market for photovoltaic (PV) solar panel technology is expanding rapidly. The increasing market for PV panels reflects the increasing demand for a clean, reliable energy solution and indicates that PV panels may be the method of choice for supplementing today’s global energy needs. Although PV solar panel production is rising, PV panels are still a relatively new and high-priced technology. There remains a need for a commercially-viable method of implementing residential-scale photovoltaic systems for consumer homes.
The purpose of this study is to ultimately maximize the irradiance (solar radiation energy) incident on a geometrically constrained 6.84-kilowatt photovoltaic array system, and thereby maximize the energy production. In this study, the optimum height and angle of bifacial (two-sided) PV modules are investigated both analytically and experimentally. Analytical methods utilize the sun’s position and average irradiance throughout the course of a day. Data is collected under actual, outdoor sunlight conditions. Furthermore, stationary flat reflectors with specular (mirror-like) and diffuse (light-scattering) reflection are used to experimentally characterize the amount of sunlight directed on the back face of the PV modules.
By validating the theoretical results with experimental evidence, the analytical model can be used to accurately predict the optimum orientation and reflective material for any location and time of year. The findings suggest that a diffusely scattering reflector is a cost-efficient solution for the proposed PV array design.
Description
Keywords
Solar Decathlon, Bifacial Photovoltaic Modules