OPTICAL ELECTRON PARAMETER SEMICONDUCTING NANOSTRUCTURES
Loading...
Date
2007
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Ohio State University
Abstract
Problem: to not use the classical Kramers-Kronig integral transformation and to define all optical electron oscillation parameters for any energy point from semiconducting nanostructure experimental reflection spectra} \textit{Proceedings}, Editors: J. Kono, Jean Leotin, Toulouse, France,\textbf {2}, 178-183, (3-7 July 2005)}. Within the untied oscillation model the calculation technique of all semiconducting heterostructure optical parameters by the intermediate functions ($\hbar\cdot\omega_{\pi}$, $\hbar\cdot\omega_{n}$, $\hbar\cdot \Gamma$) are the plasma, effective natural, radiant friction energies in eV, $2\cdot\pi\cdot\hbar$ is the Planck constant) is presented. As an example the optical parameters of PbS, PbSe, PbTe and GaAs, GaP between 0 and 25 eV in any spectrum region are established. The consistent approximation approach of the reflectance factor R to real value is advanced. As a result, all heterostructure basic electron optical functions ($\hbar\cdot\omega_{p}$, $\hbar\cdot\omega_{pm}$, $\hbar\cdot\omega_{c}$, $\hbar\cdot\gamma$ are the plasma, plasma maximum, effective natural, radiant friction energies, $\varepsilon_{r}$, $\varepsilon_{\iota}$, n$_{r}$, n$_{\iota}$ are the real and imaginary components of the dielectric $\varepsilon$ and refractive index n functions, accordingly, $(\varepsilon_{r})_{max}$, $(\varepsilon_{r}) _{min}$, $(\hbar\cdot\omega)\bullet\varepsilon_{\iota}$ is conductivity, $(\hbar\cdot\omega)\bullet n_{\iota}=(c\cdot\hbar/2)\bullet\alpha$, where c is the light velocity, $\alpha$ is absorption coefficient, $L=Im (-1/\varepsilon)$ are electron lossis, equal imaginary component of the minus reciprocal dielectric function $\varepsilon$, $\hbar\cdot\omega \bullet L=(\hbar\cdot\omega)\bullet Im (-1/\varepsilon)$ are effective electron lossis) calculated by the intermediate functions in any electron optical spectrum region. Then, for GaP experimental reflection spectra it is selected the point $\hbar^{2}\cdot\omega^{2}=10.5625\bullet10^{-4}$, the intermediate parameters are $\hbar^{2}\cdot\omega_{\pi}^{2}=10.5625 \bullet10^{-4}$, $\hbar^{2}\cdot\omega_{n}^{2}=9.03130933157\bullet 10^{-4}$, $\hbar^{2}\cdot\Gamma^{2}=1.875029665786\bullet10^{-4}$, the basic parameters are $\hbar^{2}\cdot\omega_{p}^{2}=19.5902684716 \linebreak\bullet10^{-4}$, $\hbar^{2}\cdot\omega_{c}^{2}=5.28479085993 \bullet10^{-4}$, $\hbar^{2}\cdot\gamma^{2}=0.79237637701\bullet10^{-4}$ (eV)$^{2}$. The R values calculated by electron parameters coincide with the experimental values $R (\hbar\omega)$ to within $10^{-6}\div10^{-10}$ for 12 symbol computation. By presented method the nanostructure oscillation electron parameters are determined for device producing.
Description
Author Institution: M. V. Lomonosov Moscow State University, Physics Faculty, 119992,; Moscow, Sparrow Hills, Russia