CALCULATION OF VIBRATION-ROTATION ENERGY LEVELS IN $H_{2} ^{16}O$. THE TWO TRIADS OF INTERACTING STATES (020),(100),(001) AND (030),(110),(O11)

Loading...
Thumbnail Image

Date

1974

Journal Title

Journal ISSN

Volume Title

Publisher

Ohio State University

Research Projects

Organizational Units

Journal Issue

Abstract

Using a Hamiltonian H taking into account Fermi resonance ($\omega^{1}\simeq 2\omega_{2}$) and Coriolis resonances ($\omega_{1}\simeq\omega_{3}, 2\omega_{2}\simeq\omega_{3}$) we have been able to perform good fits of experimental results for the 2 triads of interacting states: $$I\left\{\begin{array}{l}(020) = 3151.630 \mbox{cm}^{-1}\\(100) = 3657.054\mbox{ cm}^{-1}\\(001) = 3755.930\mbox{ cm}^{-1}\\\end{array}\right.\mbox{ and }{II}\left\{\begin{array}{l}(030) = 4666.794 \mbox{ cm}^{-1}\\(110) = 5234.977 \mbox{ cm}^{-1}\\(011) = 5331.269 \mbox{ cm}^{-1}\\\end{array}\right.$$ The v-diagonal part of H is a Watson-type Hamiltonian. The most important interaction terms are $q_{1}q_{2}, q_{1}q_{3} (J_{x}J_{z}+J_{z}J_{x})$ and $q_{2}q_{3} (J_{x}J_{z}+J_{z}J_{x})$. A comparison of the results for the triads I and II is given.

Description

Author Institution: Laboratoire de Physique, Mol\'{e}culaire et d'Optique Atmosph\'{e}rique

Keywords

Citation