Show simple item record

dc.creatorCummings, Frank E.en_US
dc.creatorCummings, Frank E.en_US
dc.date.accessioned2006-06-15T13:26:14Z
dc.date.available2006-06-15T13:26:14Z
dc.date.issued1971en_US
dc.identifier1971-P-10en_US
dc.identifier.urihttp://hdl.handle.net/1811/8770
dc.description$^{1}$J. Thorhallsson, C. Fisk, and S. Fraga, Theoret. Chim. Acta (Berl.) 10. 388 (1968). $^{2}$Howard L. Kramer. J. Chem. Phys. 53, 2783 (1970).""en_US
dc.descriptionAuthor Institution: Department of Chemistry, Atlanta University; Evans Chemical Laboratory, A. D. Little, Inc.en_US
dc.description.abstractThe oscillator strength sums {S}(-{k})=-\frac{2}{3}(2{j}+1)^{-1}\sum_{{J}^{\prime}}<{J}\parallel{R}^{(1)}\parallel{J}^{\prime}><{J}^{\prime}\parallel{R}^{(1)}\parallel{J}>(-)^{j^{\prime}-j}/({E}_{j}-{E}_{j})^{{k}-1} for k=1,2,3 have been calculated for the atoms He thru Kr. The sum S ($-1$) is calculated directly from analytical Hartree-Fock wavefunctions and S ($-2$) and S ($-3$) are found via a variational method $^{1}$ The interpolated values of S ($-1.5$) gave the spherically averaged dispersion coefficient as $C_{6}=\frac{3}{4}{S}(-1.5)^{2}$ for the homonuclear $diatomics.^{2}$en_US
dc.format.extent99474 bytes
dc.format.mimetypeimage/jpeg
dc.language.isoEnglishen_US
dc.publisherOhio State Universityen_US
dc.titleOSCILATOR STRENGTH SUMS AND AVERAGE DISPERSION COEFFICIENTS, $C^{6}$, FOR He TO Kren_US
dc.typearticleen_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record