Show simple item record

dc.creatorPorto, S. P. S.en_US
dc.creatorLambert, Mrs. C. A.en_US
dc.date.accessioned2006-06-15T13:12:07Z
dc.date.available2006-06-15T13:12:07Z
dc.date.issued1963en_US
dc.identifier1963-G-6en_US
dc.identifier.urihttp://hdl.handle.net/1811/8235
dc.descriptionAuthor Institution: BELL Telephone Laboratories Incorporateden_US
dc.description.abstract“The existent potential functions for diatomic molecules fall into two general categories: the sprits expansions or the closed exponential functions, with adjustable constants. We want to propose a new type of curve, with three adjustable parameters K, A, B: \begin{equation}V(r) = K \left( \frac{A}{r^{2}} \tan \frac{\pi}{2 + r^{4}} - \frac{\pi}{1 + \frac{r^{2}}{B}} \sin \frac{\pi}{1 + \frac{r^{2}}{B}}\right) \end{equation} where r is the interatomic distance. This kind of function meets all the requirements for the usual potential function including its behaviour for $r \rightarrow 0$ and $r \rightarrow \infty$. If one tries to fit this kind of a function to a Kolos and Roothaan potential curve for the ground State of $H_{2}$ it is necessary, for a good fit, to introduce a second attraction term: \begin{equation} V(r) = K \left( \frac{A}{r^{2}} \tan \frac{\pi}{2 + r^{4}} - \frac{\pi}{1 + \frac{r^{2}}{B}} \sin \frac{\pi}{1 + \frac{r^{2}}{B}} - D \frac{\pi}{1 + \frac{r^{2}}{C}} \sin \frac{\pi}{1 + \frac{r^{2}}{C}}\right) \end{equation} The advantages and disadvantages of such three and five constants potential functions will be discussed.”en_US
dc.format.extent84025 bytes
dc.format.mimetypeimage/jpeg
dc.language.isoEnglishen_US
dc.publisherOhio State Universityen_US
dc.titleAN ANALYTICAL EXPRESSION FOR THE POTENTIAL CURVE OF $H_{2}$en_US
dc.typearticleen_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record