Show simple item record

dc.creatorJekeli, Christopher
dc.creatorAbt, Tin Lian
dc.date.accessioned2015-02-18T00:00:43Z
dc.date.available2015-02-18T00:00:43Z
dc.date.issued2010-05
dc.identifier.urihttp://hdl.handle.net/1811/65223
dc.description.abstractThis document first reviews the theory of detecting a subsurface linear anomaly using the matched filter applied to observations of the gravitational gradient in the presence of a nominal gravitational background field and along tracks crossing the anomaly orthogonally or at an arbitrary angle. The maximum filter output indicates the likely location along the track and, with appropriate statistical assumptions on the background field and measurement noise, it also serves as a test statistic in the probabilistic evaluation of the filter’s performance. Different setups of the Neyman-Pearson statistical hypothesis test yield calculated probabilities of either a miss or a false alarm, respectively. The needed statistics of the maximum filter output are properly obtained using the distribution of order statistics. Through Monte Carlo simulations, we analyzed the ability of the matched filter to identify certain signals in typically correlated gravity fields using observations of elements of the gravity gradient tensor. We also evaluated the reliability of the hypothesis testing and of the associated calculated probabilities of misses and false alarms. We found that the hypothesis test that yields the probability of a miss is more robust than the one for the probability of a false alarm. Moreover, the probability of a miss is somewhat less than the probability of a false alarm under otherwise equal circumstances. Our simulations and statistical analyses confirm that the power of the tests increases as the signal strength increases and as more gradient tensor components per observation point are included. Finally, we found that the statistical methods apply only to single tracks (one-dimensional matched filter) and that the matched filter itself performs poorly for multiple parallel tracks (two-dimensional formulation) crossing a linear anomaly obliquely. Therefore, these methods are most useful, with respect to both the detection and the probability calculation, for single tracks of data crossing a linear anomaly (at arbitrary angle).en_US
dc.language.isoen_USen_US
dc.publisherOhio State University. Division of Geodetic Scienceen_US
dc.relation.ispartofseriesOhio State University. Geodetic Science. Report. no. 494en_US
dc.rightsThis item may be protected by copyright, and is made available here for research and educational purposes. The user is responsible for making a final determination of copyright status. If copyright protection applies, permission must be obtained from the copyright holder to reuse, publish, or reproduce the object beyond the bounds of Fair Use or other exemptions to the law.en_US
dc.titleThe Statistical Performance of the Matched Filter for Anomaly Detection Using Gravity Gradientsen_US
dc.typeTechnical Reporten_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record