Show simple item record

dc.creatorMagliery, Thomas J.
dc.creatorRegan, Lynne
dc.date.accessioned2011-02-10T18:34:02Z
dc.date.available2011-02-10T18:34:02Z
dc.date.issued2005-09-30
dc.identifier.citationThomas J. Magliery and Lynne Regan, "Sequence variation in ligand binding sites in proteins," BMC Bioinformatics 6 (2005), doi:10.1186/1471-2105-6-240, http://www.biomedcentral.com/1471-2105/6/240en_US
dc.identifier.issn1471-2105
dc.identifier.urihttp://hdl.handle.net/1811/47875
dc.description.abstractBackground: The recent explosion in the availability of complete genome sequences has led to the cataloging of tens of thousands of new proteins and putative proteins. Many of these proteins can be structurally or functionally categorized from sequence conservation alone. In contrast, little attention has been given to the meaning of poorly-conserved sites in families of proteins, which are typically assumed to be of little structural or functional importance. Results: Recently, using statistical free energy analysis of tetratricopeptide repeat (TPR) domains, we observed that positions in contact with peptide ligands are more variable than surface positions in general. Here we show that statistical analysis of TPRs, ankyrin repeats, Cys2His2 zinc fingers and PDZ domains accurately identifies specificity-determining positions by their sequence variation. Sequence variation is measured as deviation from a neutral reference state, and we present probabilistic and information theory formalisms that improve upon recently suggested methods such as statistical free energies and sequence entropies. Conclusion: Sequence variation has been used to identify functionally-important residues in four selected protein families. With TPRs and ankyrin repeats, protein families that bind highly diverse ligands, the effect is so pronounced that sequence "hypervariation" alone can be used to predict ligand binding sites.en_US
dc.language.isoen_USen_US
dc.publisherBioMed Centralen_US
dc.titleSequence variation in ligand binding sites in proteinsen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/1471-2105-6-240
dc.identifier.osuauthormagliery.1
dc.rights.ccAttribution 3.0 Unporteden_US
dc.rights.ccurihttp://creativecommons.org/licenses/by/3.0/en_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported