Show simple item record

dc.creatorAberegg, Scott K.
dc.creatorRichards, D. Roxanne
dc.creatorO'Brien, James M.
dc.date.accessioned2010-12-30T15:46:44Z
dc.date.available2010-12-30T15:46:44Z
dc.date.issued2010-04-29
dc.identifier.citationScott K. Aberegg, D. Roxanne Richards, and James M. O'Brien, "Delta inflation: a bias in the design of randomized controlled trials in critical care medicine," Critical Care 14, no. 2 (2010), doi:10.1186/cc8990, http://ccforum.com/content/14/2/R77en_US
dc.identifier.urihttp://hdl.handle.net/1811/47415
dc.description.abstractIntroduction: Mortality is the most widely accepted outcome measure in randomized controlled trials of therapies for critically ill adults, but most of these trials fail to show a statistically significant mortality benefit. The reasons for this are unknown. Methods: We searched five high impact journals (Annals of Internal Medicine, British Medical Journal, JAMA, The Lancet, New England Journal of Medicine) for randomized controlled trials comparing mortality of therapies for critically ill adults over a ten year period. We abstracted data on the statistical design and results of these trials to compare the predicted delta (delta; the effect size of the therapy compared to control expressed as an absolute mortality reduction) to the observed delta to determine if there is a systematic overestimation of predicted delta that might explain the high prevalence of negative results in these trials. Results: We found 38 trials meeting our inclusion criteria. Only 5/38 (13.2%) of the trials provided justification for the predicted delta. The mean predicted delta among the 38 trials was 10.1% and the mean observed delta was 1.4% (P < 0.0001), resulting in a delta-gap of 8.7%. In only 2/38 (5.3%) of the trials did the observed delta exceed the predicted delta and only 7/38 (18.4%) of the trials demonstrated statistically significant results in the hypothesized direction; these trials had smaller delta-gaps than the remainder of the trials (delta-gap 0.9% versus 10.5%; P < 0.0001). For trials showing non-significant trends toward benefit greater than 3%, large increases in sample size (380% - 1100%) would be required if repeat trials use the observed delta from the index trial as the predicted delta for a follow-up study. Conclusions: Investigators of therapies for critical illness systematically overestimate treatment effect size (delta) during the design of randomized controlled trials. This bias, which we refer to as "delta inflation", is a potential reason that these trials have a high rate of negative results.en_US
dc.language.isoen_USen_US
dc.publisherBioMed Centralen_US
dc.titleDelta inflation: a bias in the design of randomized controlled trials in critical care medicineen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/cc8990
dc.identifier.osuauthorobrien.87
dc.rights.ccAttribution 3.0 Unporteden_US
dc.rights.ccurihttp://creativecommons.org/licenses/by/3.0/en_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported