Show simple item record

dc.creatorOh, Yeonyee
dc.creatorDonofrio, Nicole
dc.creatorPan, Huaqin
dc.creatorCoughlan, Sean
dc.creatorBrown, Douglas E.
dc.creatorMeng, Shaowu
dc.creatorMitchell, Thomas
dc.creatorDean, Ralph A.
dc.date.accessioned2010-12-14T15:22:28Z
dc.date.available2010-12-14T15:22:28Z
dc.date.issued2008-05-20
dc.identifier.citationYeonyee Oh et al, "Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae,"Genome Biology 9, no. 5 (2008), doi:10.1186/gb-2008-9-5-r85, http://genomebiology.com/content/9/5/R85en_US
dc.identifier.urihttp://hdl.handle.net/1811/47383
dc.description.abstractBackground: Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood. Results: We analyzed genome-wide gene expression changes during spore germination and appressorium formation on a hydrophobic surface compared to induction by cAMP. During spore germination, 2,154 (approximately 21%) genes showed differential expression, with the majority being up-regulated. During appressorium formation, 357 genes were differentially expressed in response to both stimuli. These genes, which we refer to as appressorium consensus genes, were functionally grouped into Gene Ontology categories. Overall, we found a significant decrease in expression of genes involved in protein synthesis. Conversely, expression of genes associated with protein and amino acid degradation, lipid metabolism, secondary metabolism and cellular transportation exhibited a dramatic increase. We functionally characterized several differentially regulated genes, including a subtilisin protease (SPM1) and a NAD specific glutamate dehydrogenase (Mgd1), by targeted gene disruption. These studies revealed hitherto unknown findings that protein degradation and amino acid metabolism are essential for appressorium formation and subsequent infection. Conclusion: We present the first comprehensive genome-wide transcript profile study and functional analysis of infection structure formation by a fungal plant pathogen. Our data provide novel insight into the underlying molecular mechanisms that will directly benefit efforts to identify fungal pathogenicity factors and aid the development of new disease management strategies.en_US
dc.language.isoen_USen_US
dc.publisherBioMed Centralen_US
dc.titleTranscriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzaeen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/gb-2008-9-5-r85
dc.identifier.osuauthormitchell.815
dc.rights.ccAttribution 3.0 Unporteden_US
dc.rights.ccurihttp://creativecommons.org/licenses/by/3.0/en_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Unported
Except where otherwise noted, this item's license is described as Attribution 3.0 Unported