Show simple item record

dc.creatorPirali, O.en_US
dc.creatorMartin, M.-A.en_US
dc.creatorVervloet, M.en_US
dc.creatorBalcon, D.en_US
dc.creatorYu, S.en_US
dc.creatorPearson, J.en_US
dc.creatorDrouin, B.en_US
dc.creatorEndres, C. P.en_US
dc.creatorShiraishi, T.en_US
dc.creatorKobayashi, K.en_US
dc.creatorMatsushima, F.en_US
dc.date.accessioned2010-07-12T14:23:42Z
dc.date.available2010-07-12T14:23:42Z
dc.date.issued2010en_US
dc.identifier2010-FC-04en_US
dc.identifier.urihttp://hdl.handle.net/1811/46353
dc.descriptionAuthor Institution: Ligne AILES--Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette, France; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA; I. Physikalisches Institut, Universitat zu Koln, 50937 Koln, Germany; Department of Physics, University of Toyama, Gofuku, Toyama 930-8555, Japanen_US
dc.description.abstractSince its first detection in 1968, ammonia was discovered as a major constituent of several planetary atmospheres. More recently, ammonia has been suggested in the atmosphere of cool brown dwarf and is expected to be present in quantity in the atmospheres of many newly discovered exoplanets and brown dwarf stars where temperatures are in the order of 1000 K . For such temperatures, spectroscopic knowledge of ammonia's IR spectrum needs to be improved both in term of line positions and intensities. Even for the two lowest vibrational levels (ground state and $v_2 = 1$) its large amplitude inversion motion complicates the spectral modelling and the experimental dataset have been (up to now) limited to low quantum numbers (J of about 20). We associated experimental results obtained from far infrared techniques and terahertz spectroscopy to obtain accurate energies for highly excited J levels (as high as J=35) in the ground state and $v_2 = 1$. This work significantly increases the experimental dataset available to support astronomical observations; we will present the techniques developed in this work as well as the spectral analysis and fit of the new dataset.en_US
dc.language.isoenen_US
dc.publisherOhio State Universityen_US
dc.titleTERAHERTZ AND FAR-INFRARED SPECTROSCOPY OF HIGH-J TRANSITIONS OF THE GROUND AND $v_2 = 1$ STATES OF NH$_3$en_US
dc.typeArticleen_US
dc.typeImageen_US
dc.typePresentationen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record