Indirect Effects of Predation in a Freshwater, Benthic Food Chain
Keywords:
algal assemblagefield-cage experiments
food chain theory
freshwater snails
herbivory
indirect effects
periphyton
predation
pumpkinseed sunfish
top-down effects
trophic cascade
yellow perch
Issue Date:
1992Metadata
Show full item recordCitation:
Bronmark, Christer; Klosiewski, Steven P.; Stein, Roy A. "Indirect Effects of Predation in a Freshwater, Benthic Food Chain," Ecology, v. 73, no. 5, 1992, pp. 1662-1674.Abstract:
Theories of cascading trophic interactions provide specific predictions regarding
the forces that regulate populations across trophic levels. Reducing predators in a
food chain with three trophic levels should permit herbivores to increase. thus reducing
primary producers. In a manipulative experiment involving a molluscivorous fish (pumpkinseed sunfish, Lepomis gibbosus), freshwater snails, and periphytic algae, we tested this prediction. With 10 cages (3 x 3 x 2 m) in each of two lakes in northern Wisconsin, we generated three treatments: exclosures (fishless). enclosures (three pumpkinseed sunfish), and cageless controls, both in Mann Lake, which had high natural densities of pumpkinseed sunfish (HDP), and in Round Lake, which had low densities (LDP). During a 16-mo experiment, we quantified snail and periphyton biomass on plastic flagging within treatments
during summer at 3- and 6-wk intervals in 1986 and 1987, respectively.
Predation by pumpkinseed sunfish reduced snail biomass on flagging, permitting periphyton biomass to increase, as compared to exclosures. As expected. periphyton biomass in cageless controls in Mann Lake (HDP) mirrored periphyton biomass in enclosures, whereas cageless controls in Round Lake (LDP) differed from exclosures. The periphyton assemblage changed dramatically with increasing grazing pressure. In enclosures (low grazing),
filamentous algae and large, stalked diatoms dominated the periphyton assemblage,
whereas in exclosures (high grazing), assemblages were dominated by small, adnate diatoms and a colonial. filamentous bluegreen alga (Gloeotrichia). In laboratory trials, snails preferentially
fed on periphyton from enclosures (where grazing pressure had been low).
Predation reduced snail density, but indirectly increased periphyton biomass, dramatically modifying species composition of the assemblage. Thus, in mesotrophic Wisconsin lakes, top-down interactions regulate the benthic. freshwater food chain.
Sponsors:
During part of this study C. Bronmark was supported by an Ohio State University post-doctoral fellowship, funded through the Graduate School, The Ohio State University.
Support from the National Science Foundation (to R. A. Stein, BSR 850772) and from the Swedish Natural Science Research
Board and the Swedish Institute (to C. Bronmark) is appreciated.
Type:
ArticleISSN:
0012-9658 (print)Collections
Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.