Show simple item record

dc.creatorMargules, L.en_US
dc.creatorJaneckova, R.en_US
dc.creatorBailleux, S.en_US
dc.creatorPerrin, A.en_US
dc.creatorEndres, C.en_US
dc.creatorGiesen, T. F.en_US
dc.creatorSchlemmer, S.en_US
dc.date.accessioned2008-07-15T13:57:59Z
dc.date.available2008-07-15T13:57:59Z
dc.date.issued2008en_US
dc.identifier2008-RH-15en_US
dc.identifier.urihttp://hdl.handle.net/1811/33574
dc.description[1]Mangum-JG ; Wootten-A ; Barsony-M , Astrophys. J.[2]D. C. Reuter, H. Takeo, S. Nadler, S.J.Daunt, and J. W. C. Johns, J. Chem. Phys.[3]F. Kwabia Tchana, A. Perrin and N. Lacome, J. Mol. Spectrosc.en_US
dc.descriptionAuthor Institution: Laboratoire PhLAM, CNRS UMR 8523, Universite de Lille 1, Bat. P5, 59655 Villeneuve d'Ascq Cedex, France.; Laboratoire Inter Universitaire des Systemes Atmospheriques, CNRS UMR 7583, Universite Paris 12, 61 Av du General de Gaulle, 94010 Creteil Cedex France.; I. Physikalisches Institut, Universitat zu Koln, 50937 Koln, Germany.en_US
dc.description.abstractThis work, besides its fundamental interest, is motivated by the astrophysical importance of formaldehyde. For example formaldehyde was detected by millimeter techniques in Orion-KL and in several low-mass protostars }} {\textbf{526}} 845-53 (1999)}. However, no line parameters are presently available in the spectroscopic databases for the rotational transitions within the 2$^{1}$, 3$^{1}$, 4$^{1}$ and 6$^{1}$ first excited vibrational states of formaldehyde. The goal of this study is to generate a list of line parameters for these "hot" transitions in order to help such - may be - future identifications in astrophysical spectra. For this reason, submillimeter spectra were recorded at Lille and at Koln in the 150-650 and 850-900 GHz spectral ranges, respectively. These sub millimeter data were combined in a least squares fit calculation with the infrared experimental data available in the literature for the $\nu_3$, $\nu_4$ and $\nu_6$ bands }} {\textbf91}, 646 (1989)}, and for the $\nu_2$ band }} {\textbf{245}}, 141-144, (2007)}. The Hamiltonian model accounts for the various Coriolis-type resonances which perturb the energy levels of the 3$^{1}$, 4$^{1}$ and 6$^{1}$ vibrational states. In addition a weaker and somehow unexpected anharmonic resonance coupling the 2$^{1}$ and 3$^{1}$ energy levels was accounted for.Using this theoretical model, it proved possible to reproduce satisfactorily the experimental data and to generate a list of line positions and intensities for the $\nu_2~\leftrightarrow~\nu_2$, $\nu_3~\leftrightarrow~\nu_3$, $\nu_4~\leftrightarrow~\nu_4$, and $\nu_6~\leftrightarrow~\nu_6$ rotational transitions.en_US
dc.language.isoEnglishen_US
dc.publisherOhio State Universityen_US
dc.titleROTATIONAL TRANSITIONS IN THE INTERACTING $\nu_2 $, $\nu_3 $, $\nu_4$ AND $\nu_6$ BANDS OF FORMALDEHYDE IN H$_2^{12}$C$^{16}$O THE MILLIMETER RANGE FOR ASTROPHYSICAL USEen_US
dc.typeArticleen_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record