Show simple item record

dc.creatorWatson, James K. G.en_US
dc.date.accessioned2008-07-15T13:53:08Z
dc.date.available2008-07-15T13:53:08Z
dc.date.issued2008en_US
dc.identifier2008-RE-08en_US
dc.identifier.urihttp://hdl.handle.net/1811/33527
dc.descriptionAuthor Institution: Steacie Institute for Molecular Sciences, National Research; Council of Canada, Ottawa, Ontario, Canada K1M 1P2en_US
dc.description.abstractThe unitary transformations $e^{iS}He^{-iS}$ discussed in Part I are usually expanded in the form \begin{equation} e^{iS}He^{-iS}=H+i[S,H]-\frac{1}{2}[S,[S,H]]-\frac{i}{6}[S,[S,[S,H]]] +\frac{1}{24}[S,[S,[S,[S,H]]]]+\ldots \end{equation} If this expansion is truncated, then the transformation is not in general unitary. Thus the eigenvalues usually change for such a truncated expansion, and the parameters seem to become `determinate by truncation'. For example, for a sextic centrifugal Hamiltonian the eigenvalues will not be exactly invariant to changes of the parameters, because of truncation effects. Nevertheless, least-squares fits using all of the allowed parameters tend to be ill-conditioned, and systematic errors, such as those involved in truncating the Hamiltonian, will tend to distort the values obtained for the parameters. These truncation problems will be discussed with reference to centrifual distortion in asymmetric tops.en_US
dc.language.isoEnglishen_US
dc.publisherOhio State Universityen_US
dc.titleSURVEY OF INDETERMINACIES OF FITTING PARAMETERS IN MOLECULAR SPECTROSCOPY. II. TRUNCATION PROBLEMS AND CENTRIFUGAL DISTORTION.en_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record