Show simple item record

dc.creatorLafferty, W. J.en_US
dc.creatorPine, A. S.en_US
dc.creatorSams, Robert L.en_US
dc.creatorFlaud, J.- M.en_US
dc.date.accessioned2007-11-20T17:11:23Z
dc.date.available2007-11-20T17:11:23Z
dc.date.issued1995en_US
dc.identifier1995-RL-09en_US
dc.identifier.urihttp://hdl.handle.net/1811/29722
dc.descriptionAuthor Institution: NIST, Gaithersburg, MD 20899; NIST, Gaithersburg, MD 20899; Univ. de P. et M. Curie, Tour 13 Bte. 76, 4 Place Jussieu 75252 Paris Cedex 05, France.en_US
dc.description.abstractThe $\nu_{1} + \nu_{3}$ combination band is the strongest absorption band of $SO_{2}$ that falls in an atmospheric window. We have studied this band with a difference-frequency laser spectrometer at low pressure (0.20 Torr - 8.25 m path) to minimize pressure broadening effects. Close to 2000 lines of the (101-000) and (111-010) bands have been assigned as well as 100 lines of the (101-000) band of the $^{34}SO_{2}$ isotopic species. After correction for a very weak Fermi interaction of the enery levels of (101) With the nearby (120) state, the observed transition wavenumbers can be fit using a Watson Hamiltonian to within the experimental uncertainty $(\pm 0.00011 cm^{-1})$. The observed peak absorptions together with small corrections for pressure broadening and instrumental effects were used to calculated individual line intensities for all unblended lines. These intensities were least-squares fit, and transition moments as well as their rotational corrections were obtained. These rotational and transition moment constants were then used to generate a listing of line positions and intensities, and the total band intensity was obtained by summing all the calculated intensities. The band intensities obtained in $cm^{-2} atm^{-1}$ at 296 K for ${^{32}}SO_{2}$ are $S_{\nu}(101-000) = 13.36, S_{\nu}(111-010) = 1.052$ and $S_{\nu}(120-000) = 0.170$. The uncertainty in these values is estimated to be $\pm 5%$. The total integrated band intensity was obtained using a commercial FT spectrometer at a resolution of $0.11 cm^{-1}$ using NIST primary standard gas mixtures of $SO_{2}$ in $N_{2}$ with a total pressure of 1 atm. Nine measurements were made using a variety of partial pressures of $SO_{2}$ and path lengths. The total integrated intensity obtained was $15.19(46) cm^{-2} atm^{-1}$ at 296 K. After correction for hot band contributions to the intensity and the isotopic abundance of sulfur, a value for the total band intensity of the (101-000) band of $^{32}SO_{2}$ of $13.31(40) cm^{-2} atm^{-1}$ was obtained in excellent agreement with the high resolution results.en_US
dc.format.extent90427 bytes
dc.format.mimetypeimage/jpeg
dc.language.isoEnglishen_US
dc.publisherOhio State Universityen_US
dc.titleCOMPARISON OF THE $\nu_{1} + \nu_{3}$ BAND INTENSITY OF $SO_{2}$ DETERMINED BY HIGH RESOLUTION MEASUREMENTS AND THE TOTAL INTEGRATED BAND INTENSITY TECHNIQUEen_US
dc.typearticleen_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record