Show simple item record

dc.creatorMussa, Hamse Y.en_US
dc.creatorTennyson, Jonathanen_US
dc.date.accessioned2006-06-15T19:09:38Z
dc.date.available2006-06-15T19:09:38Z
dc.date.issued1998en_US
dc.identifier1998-TI-07en_US
dc.identifier.urihttp://hdl.handle.net/1811/19103
dc.descriptionReferences: [1] J. Tennyson, J.R. Henderson, N.F.Fulton, Computer.Phys.Comm.,86 (1995) 175-196. [2] H.Y. Mussa, J. Tennyson, C.J. Noble and R.J. Allan. Computer.Phys.Comm., 108 (1998) 29-37. [3] A.J.C. Varandas, J.Chem.Phys., 105 (1996) 9. [4] T.-S. Ho, T. Hollebeck, H. Rabitz., L.B. Harding, G. Schatz, J.Chem.Phys., 105 (1996) 10472. [5] R. Prosmiti, O.L. Polyansky and J. Tennyson, Chem. Phys. Lett., 273 (1997) 107-114.en_US
dc.descriptionAuthor Institution: Department of Physics and Astronomy, University College Londonen_US
dc.description.abstractEven small chemically bound molecules have $10^{5}$ or more bound states. Calculations of this size represent a grand challenge to conventional computers. We have parallelized DVR based program suite DVR3D(1) to give PDVR3D(2). The PDVR3D suite runs on the Cray T3D/T3E at Edinburgh University(U.K.), the IBM SP2 at Daresbury(U.K.) and on the Cray T3E at CINECA (Italy). As a first application of PDVR3D, we are studying the water molecule using two newly available global potentials due to Varandas(3) and Ho and Rabitz(4). We have calculated the ro-vibrational levels of water up to dissociation limits for both potentials. Studies of bound and quasibound ro-vibrational states of $H^{+}_{3}$, using a realistic global potential(5), are also being performed.en_US
dc.format.extent133681 bytes
dc.format.mimetypeimage/jpeg
dc.language.isoEnglishen_US
dc.publisherOhio State Universityen_US
dc.titleCALCULATING $H_{2}O$ STATES UP TO DISSOCIATION STATES USING PDVR3Den_US
dc.typearticleen_US


Files in this item

Thumbnail

Items in Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.

This item appears in the following Collection(s)

Show simple item record