OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 12:00 pm EDT. During this time users will not be able to register, login, or submit content.

BOND AND MOLECULAR POLARIZABILITIES FROM A DELTA FUNCTION MODEL OF CHEMICAL BINDING

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/8204

Show full item record

Files Size Format View
1963-D-10.jpg 142.0Kb JPEG image Thumbnail of BOND AND MOLECULAR POLARIZABILITIES FROM A DELTA FUNCTION MODEL OF CHEMICAL BINDING

Title: BOND AND MOLECULAR POLARIZABILITIES FROM A DELTA FUNCTION MODEL OF CHEMICAL BINDING
Creators: Lippincott, Ellis R.; Stutman, Joel M.
Issue Date: 1963
Abstract: “One-dimensional electronic wave functions obtained by means of a delta-function potential are used to calculate expectation values of $x^{2}$ which have the form \[ <X^{2}> = R^{2}/4+1/(2c^{2}) - \frac{cR^{3} e^{cR}}{6(1 + cRe^{-cR})} \] where R is the internuclear distance, and where c is obtained from the atomic delta-function strengths for the appropriate atoms. Using the expression for the parallel (bond) component of the polarizability obtained through a variational treatment, the expression for the polarizability is \[ \alpha_{11} = \frac{4n}{a_{o}}[<x^{2}>]^{2} \] where n is the bond order. In spite of the approximations in the model, the calculated parallel components are generally in good agreement with the values found in the literature for most diatomic systems. To obtain the contributions to the perpendicular components, it is assumed that the assumed the atomic polarizabilities (calculated from the corresponding atomic delta functions) of the various atoms of a molecule sum up to yield the perpendicular component for the molecule. Generally very good agreement with the corresponding experimental values for the molecular (average) polarizabilities is obtained for polyatomic as well as diatomic systems studied. A comparison of calculated with experimental quantities is given below. “ [FIGURE]
URI: http://hdl.handle.net/1811/8204
Other Identifiers: 1963-D-10
Bookmark and Share