OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 12:00 pm EDT. During this time users will not be able to register, login, or submit content.

Heritable clustering and pathway discovery in breast cancer integrating epigenetic and phenotypic data

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/47495

Show full item record

Files Size Format View
fac_LinS_BMCBioinformatics_2007_8_38.pdf 374.1Kb PDF View/Open

Title: Heritable clustering and pathway discovery in breast cancer integrating epigenetic and phenotypic data
Creators: Wang, Zailong; Yan, Pearlly; Potter, Dustin; Charis, Eng; Huang, Tim H-M.; Lin, Shili
Issue Date: 2007-02-01
Publisher: BioMed Central
Citation: Zailong Wang et al, "Heritable clustering and pathway discovery in breast cancer integrating epigenetic and phenotypic data," BMC Bioinformatics 8 (2007), doi:10.1186/1471-2105-8-38, http://www.biomedcentral.com/1471-2105/8/38
DOI: 10.1186/1471-2105-8-38
Abstract: Background: In order to recapitulate tumor progression pathways using epigenetic data, we developed novel clustering and pathway reconstruction algorithms, collectively referred to as heritable clustering. This approach generates a progression model of altered DNA methylation from tumor tissues diagnosed at different developmental stages. The samples act as surrogates for natural progression in breast cancer and allow the algorithm to uncover distinct epigenotypes that describe the molecular events underlying this process. Furthermore, our likelihood-based clustering algorithm has great flexibility, allowing for incomplete epigenotype or clinical phenotype data and also permitting dependencies among variables. Results: Using this heritable clustering approach, we analyzed methylation data obtained from 86 primary breast cancers to recapitulate pathways of breast tumor progression. Detailed annotation and interpretation are provided to the optimal pathway recapitulated. The result confirms the previous observation that aggressive tumors tend to exhibit higher levels of promoter hypermethylation. Conclusion: Our results indicate that the proposed heritable clustering algorithms are a useful tool for stratifying both methylation and clinical variables of breast cancer. The application to the breast tumor data illustrates that this approach can select meaningful progression models which may aid the interpretation of pathways having biological and clinical significance. Furthermore, the framework allows for other types of biological data, such as microarray gene expression or array CGH data, to be integrated.
ISSN: 1471-2105
URI: http://hdl.handle.net/1811/47495
Bookmark and Share
Attribution 3.0 Unported This item is licensed under a Creative Commons License:
Attribution 3.0 Unported