OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/46226

Show full item record

Files Size Format View
abstract.gif 69.46Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
CH+.ppt 2.553Mb Microsoft PowerPoint View/Open
Slide1.GIF 9.503Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide2.GIF 23.74Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide3.GIF 14.95Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide4.GIF 16.08Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide5.GIF 13.51Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide6.GIF 25.08Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide7.GIF 14.32Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide8.GIF 18.16Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide9.GIF 18.62Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide10.GIF 24.49Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide11.GIF 21.02Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide12.GIF 17.69Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide13.GIF 21.38Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide14.GIF 21.66Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide15.GIF 23.82Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide16.GIF 9.057Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide17.GIF 2.203Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide18.GIF 70.80Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Slide19.GIF 17.73Kb GIF image Thumbnail of THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$

Title: THE $J=1\leftarrow 0$ ROTATIONAL TRANSITIONS OF $^{12}$CH$^+$, $^{13}$CH$^+$ and $^{12}$CD$^+$
Creators: Amano, T.
Issue Date: 2010
Abstract: The CH$^+$ ion is the first molecular ion identified in interstellar space. Dunham, \textbf{49},~26 (1937)} detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg \textbf{94},~381 (1941)} identified them based on their laboratory observations. The electronic spectra have been investigated extensively. On the other hand, the pure rotational transitions are less extensively studied. Cernicharo {\em et al}, \textit{Astrophys. J.}, \textbf{483},~L65 (1997)} reported the interstellar detection of the $J$=2-1, 3-2, and 4-3 transitions in NGC 7027. Pearson and Drouin, \textbf{647},~L83 (2006)} reported the laboratory observation of the $J$=1-0 line of $^{12}$CH$^+$ at 835078.950 MHz and, based on this frequency, predicted the frequencies for $^{13}$CH$^+$ and CD$^+$. The predicted $^{13}$CH$^+$ frequency led to identification of the interstellar line, \textit{Astrophys. J.}, \textbf{634},~L49 (2005)}. In this talk, we present a new set of measurements of the $J$=1-0 lines for the normal species together with the $^{13}$C and D isotopic species. The overwhelming evidences obtained in our experiments support the new identifications. An extended negative glow discharge in a gas mixture of CH$_4$ ($\sim 0.5$ mTorr) diluted in He ($\sim 60$ mTorr) was used for production of CH$^+$ with the discharge current of about 15 mA. Axial magnetic filed up to 160 Gauss was applied. %The signal disappears with a couple of mTorr of H$_2$ or O$_2$. %The signal intensity increases about an order of magnitude when the cell temperature is lowered from -60 $^{circ}$C to liquid nitrogen temperture. The normal species line exhibited a surprisingly large Zeeman splitting for a $^1\Sigma$ molecule. The $^{13}$CH$^+$ line showed the spin-rotation hyperfine splitting, and at higher field of 150 Gauss an unresolved lineshape was exhibited due to combined hfs and Zeeman splittings. The spin-rotation splitting in the normal species was negligibly small. The CD$^+$ line showed much smaller Zeeman and spin-rotation splittings, as expected. Details of the mechanism to induce such Zeeman effect and the spin-rotation interaction will be presented. The transition frequencies for these $J=1-0$ lines are: 835137.498(20) MHz and 453521.847(20) MHz for $^{12}$CH$^+$ and CD$^+$, respectively. The transition frequencies for $^{13}$CH$^+$ are 830216.680(50) MHz ($F=3/2-1/2$) and 830214.961(50) MHz ($F=1/2-1/2$). %These frequencies are in good agreement with those derived from the optical spectra. The uncertainties reflect possible errors in correcting the Zeeman shifts.
URI: http://hdl.handle.net/1811/46226
Other Identifiers: 2010-TJ-08
Bookmark and Share