OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 12:00 pm EDT. During this time users will not be able to register, login, or submit content.

A Comparison of Ordinary Least Squares and Logistic Regression

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/23983

Show full item record

Files Size Format View
V103N5_118.pdf 1.050Mb PDF View/Open

Title: A Comparison of Ordinary Least Squares and Logistic Regression
Creators: Pohlman, John T.; Leitner, Dennis W.
Issue Date: 2003-12
Citation: The Ohio Journal of Science. v103, n5 (December, 2003), 118-125
Abstract: This paper compares ordinary least squares (OLS) and logistic regression in terms of their underlying assumptions and results obtained on common data sets. Two data sets were analyzed with both methods. In the respective studies, the dependent variables were binary codes of 1) dropping out of school and 2) attending a private college. Results of both analyses were very similar. Significance tests (alpha = 0.05) produced identical decisions. OLS and logistic predicted values were highly correlated. Predicted classifications on the dependent variable were identical in study 1 and very similar in study 2. Logistic regression yielded more accurate predictions of dependent variable probabilities as measured by the average squared differences between the observed and predicted probabilities. It was concluded that both models can be used to test relationships with a binary criterion. However, logistic regression is superior to OLS at predicting the probability of an attribute, and should be the model of choice for that application.
URI: http://hdl.handle.net/1811/23983
ISSN: 0030-0950
Bookmark and Share