OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

$C_{3}$ EXCITATION PROFILES IN DIFFUSE INTERSTELLAR CLOUDS

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/20841

Show full item record

Files Size Format View
2003-RA-06.jpg 342.2Kb JPEG image Thumbnail of $C_{3}$ EXCITATION PROFILES IN DIFFUSE INTERSTELLAR CLOUDS

Title: $C_{3}$ EXCITATION PROFILES IN DIFFUSE INTERSTELLAR CLOUDS
Creators: Adamkovics, M.; Blake, Geoffrey A.; McCall, Benjamin J.
Issue Date: 2003
Abstract: The very high-resolution $(R > 80,000)$, very high signal-to-noise $(S/N > 1000)$, optical (4051 {\AA}) spectrum of the carbon-chain molecule $C_{3}$ is reported for 10 diffuse interstellar clouds, demonstrating the possibility for detailed study of polyatomic molecules in the diffuse interstellar medium (ISM). Thus far, $C_{3}$ is the largest identified molecular species to be observed in absorption in the diffuse ISM. The first detection of $C_{3}$ toward three stars (Maier et al., 2001) contained a single spectrum of sufficient quality to show a non-thermal equilibrium rotational excitation profile. This data was adequately modeled with a two-temperature thermal distribution. Rotationally resolved $C_{3}$ was then measured in one additional source, and a detailed radiative balance model was used to analyze the data (Roueff et al., 2002). A low resolution survey (Oka et al., 2002) has measured the column densities of $C_{3}$ in roughly 30 targets, laying the groundwork for high resolution observations. We present rotationally resolved and very high signal-to-noise spectra taken with the HIRES spectrometer on the 10-m Keck telescope and with the Hamilton echelle spectrometer on the Shane 3-m Lick Observatory telescope. The measurements allow for a detailed analysis of the $C_{3}$ molecular excitation in a variety of diffuse interstellar environments. The observed excitation profiles are modeled using 1) thermal distributions incorporating either one or two kinetic temperatures and 2) a new technique involving a least squares fit of the entire spectrum using the population in each rotational level as a fit parameter. We discuss how these observations constrain our understanding of the various environments in these sightlines, correlation between $C_{2}$ and $C_{3}$, and the prospects for the study of larger polyatomic molecules in the diffuse ISM.
URI: http://hdl.handle.net/1811/20841
Other Identifiers: 2003-RA-06
Bookmark and Share