OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

ELECTRON-MEDIATED VIBRATION-ELECTRONIC ENERGY TRANSFER IN OPTICALLY PUMPED $PLASMAS^{a}$

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/20681

Show full item record

Files Size Format View
2002-WG-04.jpg 294.5Kb JPEG image Thumbnail of ELECTRON-MEDIATED VIBRATION-ELECTRONIC ENERGY TRANSFER IN OPTICALLY PUMPED $PLASMAS^{a}$

Title: ELECTRON-MEDIATED VIBRATION-ELECTRONIC ENERGY TRANSFER IN OPTICALLY PUMPED $PLASMAS^{a}$
Creators: Plonjes, E.; Palm, P.; Rich, J. W.; Adamovich, I.; Urban, W.
Issue Date: 2002
Abstract: The paper discusses experiments on vibration-to-electronic energy transfer in CO laser pumped CO-Ar and $CO-N_{2}$ plasmas. The CO molecules absorb the laser radiation on the lowest 10 vibrational transitions and transfer energy to high vibrational states by vibration-vibration energy exchange collisions. Ionization in these strongly nonequilibrium plasmas occurs by an associative ionization mechanism in collisions of two highly excited CO molecules. Removal of the electrons from the optically pumped plasmas using a saturated Thomson discharge results in a substantial reduction of the UV/visible radiation from the plasma (CO fourth positive bands, NO $\gamma$ bands, CN violet bands, and $C_{2}$ Swan bands). This effect occurs even though electron removal results in an increase of the high vibrational level populations of the electronic ground state $CO(X^{1}\sum, v {\sim} 15-35)$. On the other hand, deliberate electron density increase by adding small amounts of $O_{2}$ or NO to the optically pumped CO-Ar plasmas produces a substantial increase of the UV/visible radiation intensity, which correlates with the electron density. The experiments strongly suggest that the V-E energy transfer process $CO(X^{1}\sum \rightarrow A^{1}\Pi)$, and, possibly, analogous processes populating radiating excited electronic states of NO, CN, and $C_{2}$, are mediated by free electrons, which are created in the absence of an electric field, with low initial energies. This effect occurs at ionization fractions as low as $n_{e}/N {\sim} 10^{-9}-10^{-7}$.
URI: http://hdl.handle.net/1811/20681
Other Identifiers: 2002-WG-04
Bookmark and Share