OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

DESCRIPTION OF NON-RIGID MOLECULAR STRUCTURE THROUGH DYNAMICAL SYMMETRY BREAKING

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/20286

Show full item record

Files Size Format View
2001-WE-10.jpg 277.3Kb JPEG image Thumbnail of DESCRIPTION OF NON-RIGID MOLECULAR STRUCTURE THROUGH DYNAMICAL SYMMETRY BREAKING

Title: DESCRIPTION OF NON-RIGID MOLECULAR STRUCTURE THROUGH DYNAMICAL SYMMETRY BREAKING
Creators: Iachello, F.; Pérez-Bernal, F.; Vaccaro, P. H.
Issue Date: 2001
Abstract: A novel algebraic scheme has been developed for investigating the structure and dynamics of explicitly non-rigid molecules, as manifest most simply in the spectral features of quasi-linear triatomic species. Our approach permits such ``floppy'' systems to be envisioned as undergoing a ``shape-changing phase transition'' between two dynamical symmetry limits of an encompassing algebraic framework (e.g., the Lie algebra $U(3)$ for triatomic bending modes) with intermediate configurations of the nuclei corresponding to situations that break dynamical symmetries. A simple model Hamiltonian has been shown to embody appropriate effects (i.e., negative or alternating positive/negative vibrational anharmonicity) for describing transformations between the ``rigidly-bent'' and ``rigidly-linear'' limiting geometries that characterize quasi-linear triatomic molecules. This theoretical treatment has been exploited successfully to interprete vibrational energy level patterns reported for the ``soft'' bending degree of freedom in the ground electronic states of magnesium hydroxide $(MgOH)$ and its deuterated isotopomer $(MgOD)$. Finally, a coherent (or intrinsic) state formalism has been shown to afford a near-direct connection between algebraic analyses and the potential energy surfaces mediating various regimes of non-rigidity, thereby furnishing valuable insight into the physical processes that govern ``floppy'' behavior.
URI: http://hdl.handle.net/1811/20286
Other Identifiers: 2001-WE-10
Bookmark and Share