FTMW/CVI: FOURIER TRANSFORM MICROWAVE / COHERENCE SPECTROSCOPY WITH VIRTUAL INSTRUMENTS

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/20055

Show full item record

Files Size Format View
2001-MG-01.jpg 349.4Kb JPEG image Thumbnail of FTMW/CVI: FOURIER TRANSFORM MICROWAVE / COHERENCE SPECTROSCOPY WITH VIRTUAL INSTRUMENTS

Title: FTMW/CVI: FOURIER TRANSFORM MICROWAVE / COHERENCE SPECTROSCOPY WITH VIRTUAL INSTRUMENTS
Creators: Grabow, Jens-Uwe
Issue Date: 2001
Publisher: Ohio State University
Abstract: Modern Fourier transform microwave (FTMW) spectroscopy, first implemented as an impulse excitation technique in a steady gas-waveguide $apparatus^{a}$, started only a quarter of a century ago. Soon after, the method was supplemented for special applications, e.g. Stark-$effect^{b}$, double $resonance^{c}$, and $2D^{d}$ spectroscopy. The subsequent implementation of the technique in a supersonic jet-resonator $apparatus^{e}$ was followed by similar developments, i.e. Stark-$effect^{f}$, double $resonance^{g}$, laser $ablation^{h}$, and $DC-discharge^{i}$. $Automation^{j}$ along with the ``coaxially oriented beam-resonator $arrangement""^{k}$ (COBRA) has greatly increased efficiency, resolution, and sensitivity of current FTMW spectrometers. We present the implementation of a complete COBRA-FTMW spectrometer featuring the capabilities given above. The entire experiment is operated, either interactivle or automatically, by a graphical user interface (GUI)-based program which is capable of waveguide and resonator applications. Developed in the C programming language, while following the concept of virtual instruments (VI), the software can co-operate with a wide variety of PCI and IEEE hardware components to build the instrument. Only one application specific logic circuit, which will also be presented, is needed.
Description: $^{a}$J. Ekkers and W. H. Flygare, Rev. Sci. Instrum. 47, 448(1976). $^{b}$G. Bestmann and H. Dreizler, Z. Naturforsch. 37a, 615(1982). $^{c}$H. Dreizler, E. Fliege, H. M\""ader, and W. Stahl, Z. Naturforsch. 37a, 1266(1982). $^{d}$D. A. Andrews and J. G. Baker, J. Phys. B20, 5705(1987). $^{e}$T. J. Balle and W. H. Flygare, Rev. Sci. Instrum. 52, 33(1981). $^{f}$L. H. Coudert, F. J. Lovas, R. D. Suenram, and J. T. Hougen, J. Chem. Phys. 87, 6290(1987). $^{g}$L. Martinache, S. Jans-B\""urli, B. Vogelsanger, W. Kresa, and A. Bauder, Chem. Phys. Lett. 149, 424(1988). $^{h}$R. D. Suenram, F. J. Lovas, and K. Matsumura, Ap. J. Lett. 342, L103(1989). $^{i}$J.-U. Grabow, N. Heineking, and W. Stahl, Z. Naturforsch. 46a, 914(1991). $^{j}$U. Andresen, H. Dreizler, J.-U. Grabow and W. Stahl, Rev. Sci. Instrum. 61, 3694(1990). $^{k}$J.-U. Grabow and W. Stahl, Z. Naturforsch. 45a, 1043(1990)
Author Institution: Institut f\""ur Physikalische Chemie und Elektrochemie
URI: http://hdl.handle.net/1811/20055
Other Identifiers: 2001-MG-01
Bookmark and Share