OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 4:00 pm EDT. During this time users will not be able to register, login, or submit content.

DIRECT STATE-SELECTIVE MEASUREMENT OF THE COOLING RATES OF VIBRATIONALLY EXCITED $1^{3}\Sigma^{+}_{g} Na_{2}$ ON THE SURFACE OF HELIUM CLUSTERS

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/18887

Show full item record

Files Size Format View
1998-RC-11.jpg 114.0Kb JPEG image Thumbnail of DIRECT STATE-SELECTIVE MEASUREMENT OF THE COOLING RATES OF VIBRATIONALLY EXCITED $1^{3}\Sigma^{+}_{g} Na_{2}$ ON THE SURFACE OF HELIUM CLUSTERS

Title: DIRECT STATE-SELECTIVE MEASUREMENT OF THE COOLING RATES OF VIBRATIONALLY EXCITED $1^{3}\Sigma^{+}_{g} Na_{2}$ ON THE SURFACE OF HELIUM CLUSTERS
Creators: Reho, J.; Higgins, J.; Lehmann, K. K.; Scoles, G.
Issue Date: 1998
Abstract: Optical excitation of the $(v^{\prime} = 10)1^{3}\Sigma_{g}^{+}\leftarrow 1^{3}\Sigma^{+}_{a}$ transition of $Na_{2}$ formed on a He cluster surface yields dispersed emission which can only be modeled by including significant contributions from all $(v^{\prime} - 10)$ lower vibrational levels of the excited electronic state. The process by which this vibrational energy is transferred from the excited dimer to the He nanodroplet has been characterized using state-selective time-correlated single photon counting. We have measured the onset of fluorescence arising from lower $v^{\prime}$ levels upon excitation of various higher vibrational states and find that in all cases fluorescence begins in less than 250 ps. Along with the non-exponential nature of the distribution of level populations, this leads us to conclude that the vibrational energy is not transferred in a cascading process but rather by means of multiquanta jumps. Following the vibrational deexcitation, the dimer emits in the gas phase, having desorbed from the cluster surface.
URI: http://hdl.handle.net/1811/18887
Other Identifiers: 1998-RC-11
Bookmark and Share