OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 12:00 pm EDT. During this time users will not be able to register, login, or submit content.


Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/18467

Show full item record

Files Size Format View
1993-MF-07.jpg 75.05Kb JPEG image Thumbnail of THE RADIAL HAMILTONIAN OPERATOR OF $HeH^{+}$

Creators: Coxon, John A.; Hajigeorgiou, P. G.
Issue Date: 1993
Abstract: Experimental line positions for $^{3}HeH^{+}, ^{4}HeH^{+}, ^{3}HeD^{+}$, and $^{4}HeD^{+}$ have been employed in the determination of an effective non-adiabatic radial Hamiltonian operator for the ground $X^{1}\Sigma^{+}$ electronic state in compact analytic form. The procedure considers a Born-Oppenheimer potential and isotopically invariant Born-Oppenheimer breakdown functions for each atomic centre. The nuclear mass-independent potential is represented by the modified Morse $function^{1}$ $U^{BO}(R)= D_{r}[1 - e^{-\beta(R)(R-R_{e})}]^{2}$ where a Pad\'{e} approximant is adopted for $\beta(R)$. The spectroscopic data base, which samples the entire potential well, includes a number of transitions from quasibound levels. The experimental line positions are reproduced to within their experimental uncertainties and calculated quasibound level widths are in excellent agreement with experimental measurements. Results are compared to recent ab initio calculations. $^{1}$. J.A. Coxon and P.G. Hajigeorgiou, J. Mol. Spectrosc. 150, 1 (1991).
URI: http://hdl.handle.net/1811/18467
Other Identifiers: 1993-MF-7
Bookmark and Share