OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 12:00 pm EDT. During this time users will not be able to register, login, or submit content.

QUADRATIC HERMAN-WALLIS CORRECTION FACTORS FOR SYMMETRIC-TOP MOLECULES. APPLICATION TO THE $H_{3}^{+}$ ION.

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/18209

Show full item record

Files Size Format View
1990-RF-08.jpg 81.76Kb JPEG image Thumbnail of QUADRATIC HERMAN-WALLIS CORRECTION FACTORS FOR SYMMETRIC-TOP MOLECULES. APPLICATION TO THE $H_{3}^{+}$ ION.

Title: QUADRATIC HERMAN-WALLIS CORRECTION FACTORS FOR SYMMETRIC-TOP MOLECULES. APPLICATION TO THE $H_{3}^{+}$ ION.
Creators: Watson, J. K. G.
Issue Date: 1990
Abstract: The Herman-Wallis correction factors to the intensities of allowed rovibronic transitions of symmetric-top molecules can be written in the form $F = \{1 + A_{1}^{j} mj + A_{1}^{k} m_{K} + A_{2}^{JJ(Q)}\sqrt{[J(J + 1)} - m_{s}^{2} + A_{2}^{JJ(PR)}m_{J}^{2} + A_{2}^{KK}\overline{K^{2}} + A_{2}^{JK} m_{J}M_{K}\}^{2}$ where $m_{J} = \frac{1}{2} [J^{\prime}(J^{\prime} + 1) - J^{\prime\prime}(J^{\prime\prime} + 1), m_{K} = \frac{1}{2} [K^{2} - K^{\prime 2}]\overline{J(J + 1)} = \frac{1}{2} J^{\prime}(J^{\prime} + 1) + J^{\prime\prime}(J^{\prime\prime} + 1)]$, and $\overline{K^{2}} = \frac{1}{2}[K^{2}+ (K^{\prime 2} + K^{\prime 2}]$. When different $(J^{\prime},K^{\prime}) - (J^{\prime\prime},K^{\prime\prime})$ transitions mix together, the square root of the above factor can be applied to each transition moment. For parallel bands the terms in mK are absent. In fundamental bands the $A_+{2}$ and $A_{2}$ coefficients are related to the parameters $\Theta_{K}^{7}$ and $\Theta_{k}^{\beta 7}$ in the effective dipole moment $operator^{1}$. Values of the $A_{1}$ and $A_{2}$, coefficients obtained by fitting the ab initio line strengths of $H_{3}^{+}$ calculated by Miller and $Tennyson^{2,3}$ will be compared with the results of perturbation calculations. The correction factors are important at the high rotational temperatures observed in emission speetra in the $laboratory^{3,4}$ and from $Jupiter^{5}$.
URI: http://hdl.handle.net/1811/18209
Other Identifiers: 1990-RF-8
Bookmark and Share