OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

$S = 4$ and $S = 5$ SPIN STATES OF THE ANTIFERROMAGNETIC $Mn_{2}$ MOLECULE

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/17527

Show simple item record

Files Size Format View
1988-MH-05.jpg 106.3Kb JPEG image Thumbnail of $S = 4$ and $S = 5$ SPIN STATES OF THE ANTIFERROMAGNETIC $Mn_{2}$ MOLECULE

dc.creator Cheeseman, M. en_US
dc.creator Weltner, W., Jr. en_US
dc.date.accessioned 2006-06-15T18:09:39Z
dc.date.available 2006-06-15T18:09:39Z
dc.date.issued 1988 en_US
dc.identifier 1988-MH-5 en_US
dc.identifier.uri http://hdl.handle.net/1811/17527
dc.description $^{1}$ C. A. Baumann, R. J. Van Zee, S. V. Bhat, and W. Weltner, Jr., J. Chem. Phys. 78, 190 (1983); J.-C. Rivoal, J. Shakhs-Emampour, K. J. Zeringue, and M. Vala 92, 313 (1982). en_US
dc.description Author Institution: Department of Chemistry, University of Florida en_US
dc.description.abstract $MD_{2}$ has been shown to be a van der Waals molecule with the two Mn atoms $(3d^{5}4s^{2})$ antiferromagnetically coupled $(J = -10 cm^{-1})$ to form a $^{1}\sigma_{g}$ lowest $state.^{1} {Mn_{2}}$ can be formed in solid methane or cyclopropane at 12 K without reacting, and warming successively populates the higher $S = 1, 2, 3, 4, 5$ spin states. These hydrocarbon matrices allowed higher temperatures to be reached than in rare-gas matrices with still resolvable spectra so that ESR transitions in $S = 4$ and $S = 5$ could be observed and analyzed. The derived g and D values corroborate the earlier application of the Judd-Owen theory. en_US
dc.format.extent 108950 bytes
dc.format.mimetype image/jpeg
dc.language.iso English en_US
dc.title $S = 4$ and $S = 5$ SPIN STATES OF THE ANTIFERROMAGNETIC $Mn_{2}$ MOLECULE en_US
dc.type article en_US