OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

CALCULATION OF VIBRATION-ROTATION ENERGY LEVELS IN $H_{2} ^{16}O$. THE TWO TRIADS OF INTERACTING STATES (020),(100),(001) AND (030),(110),(O11)

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/16241

Show full item record

Files Size Format View
1974-FC-05.jpg 142.4Kb JPEG image Thumbnail of CALCULATION OF VIBRATION-ROTATION ENERGY LEVELS IN $H_{2} ^{16}O$. THE TWO TRIADS OF INTERACTING STATES (020),(100),(001) AND (030),(110),(O11)

Title: CALCULATION OF VIBRATION-ROTATION ENERGY LEVELS IN $H_{2} ^{16}O$. THE TWO TRIADS OF INTERACTING STATES (020),(100),(001) AND (030),(110),(O11)
Creators: Camy-Peyret, C.; Flaud, J.- M.
Issue Date: 1974
Abstract: Using a Hamiltonian H taking into account Fermi resonance ($\omega^{1}\simeq 2\omega_{2}$) and Coriolis resonances ($\omega_{1}\simeq\omega_{3}, 2\omega_{2}\simeq\omega_{3}$) we have been able to perform good fits of experimental results for the 2 triads of interacting states: $$I\left\{\begin{array}{l}(020) = 3151.630 \mbox{cm}^{-1}\\(100) = 3657.054\mbox{ cm}^{-1}\\(001) = 3755.930\mbox{ cm}^{-1}\\\end{array}\right.\mbox{ and }{II}\left\{\begin{array}{l}(030) = 4666.794 \mbox{ cm}^{-1}\\(110) = 5234.977 \mbox{ cm}^{-1}\\(011) = 5331.269 \mbox{ cm}^{-1}\\\end{array}\right.$$ The v-diagonal part of H is a Watson-type Hamiltonian. The most important interaction terms are $q_{1}q_{2}, q_{1}q_{3} (J_{x}J_{z}+J_{z}J_{x})$ and $q_{2}q_{3} (J_{x}J_{z}+J_{z}J_{x})$. A comparison of the results for the triads I and II is given.
URI: http://hdl.handle.net/1811/16241
Other Identifiers: 1974-FC-5
Bookmark and Share