OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

The Knowledge Bank is scheduled for regular maintenance on Sunday, April 20th, 8:00 am to 12:00 pm EDT. During this time users will not be able to register, login, or submit content.

QUANTITATIVE BIPHOTONIC CHEMISTRY BY A FLUORESCENCE LOSS METHOD: THE PHOTODISSOCIATION OF DURENE IN A RIGID SOLUTION

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/16128

Show full item record

Files Size Format View
1973-Sigma-11.jpg 351.9Kb JPEG image Thumbnail of QUANTITATIVE BIPHOTONIC CHEMISTRY BY A FLUORESCENCE LOSS METHOD: THE PHOTODISSOCIATION OF DURENE IN A RIGID SOLUTION

Title: QUANTITATIVE BIPHOTONIC CHEMISTRY BY A FLUORESCENCE LOSS METHOD: THE PHOTODISSOCIATION OF DURENE IN A RIGID SOLUTION
Creators: Schwarz, F. P.
Issue Date: 1973
Abstract: Two simultaneous biphotonic chemistries in a rigid organic solution are treated quantitatively. The fractional ``fluorescence loss” of the parent solute molecule is monitored as the key experimental parameter for quantifying the photochemistry. The fluorescence loss results both from the depletion of the parent molecule and from competitive light absorption by the photoproducts. Furthermore the photoproducts are not homogeneously distributed in the sample because of its high viscosity. A general formalism is developed for handling this general problem with the aim of obtaining quantum yields or cross-sections for the several elementary steps. Durene as the solute in 3-methylpentane at $77^{\circ} K$ is the example studied. Here the two photochemistries are $\beta$-bond scission to give the duryl radical, and a one-electron ionization to give the durene cation. Both photochemistries proceed via a one-photon excitation from lowest durene triplet state. The two simultaneous photochemical channels are differentiated by reversing the ionization step through infrared induced charge recombination and measuring a fractional ``fluorescence recovery” of durene. Perdeuterated durene is studied as well. The $\beta$-bond cleavage shows a strong isotope effect. The quantitative results, though crude, yield the following results: The quantum yields for the second photon step at 275 nm out of the triplet state are $\sim$ 0.4 ($\beta$-bond scission) and $\sim$ 0.6 (ionization). Thus every excitation appears to lead to photochemistry. Molar decadic extinction coefficients at 270 nm in nonpolar solution at $77^{\circ} K$ are found to be $1.3\times 10^{4}$ for the triplet state, $2.5\times10^{3}$ for the duryl radical, and $\sim 0.5\times10^{3}$ for the durene cation. The efficiency for the infrared induced charge recombination to generate durene via its excited singlet and triplet states is found to be of the order of unity. Finally, a previously discovered one-photon channel for the $\beta$-bond cleavage via upper vibrational levels of the first excited singlet state is seen to proceed with a quantum yield of $\sim$ $10^{-4}$.
URI: http://hdl.handle.net/1811/16128
Other Identifiers: 1973-Sigma-11
Bookmark and Share