OSU Navigation Bar

The Ohio State University University Libraries Knowledge Bank

THE $\nu_{2} + \nu_{3}$ and $\nu_{2} + \nu_{3} – \nu_{2}$ BANDS OF NITROGEN DIOXIDE:

Please use this identifier to cite or link to this item: http://hdl.handle.net/1811/13198

Show full item record

Files Size Format View
1994-RH-03.jpg 137.2Kb JPEG image Thumbnail of THE $\nu_{2} +  \nu_{3}$ and  $\nu_{2} +  \nu_{3} –  \nu_{2}$ BANDS OF NITROGEN DIOXIDE:

Title: THE $\nu_{2} + \nu_{3}$ and $\nu_{2} + \nu_{3} – \nu_{2}$ BANDS OF NITROGEN DIOXIDE:
Creators: Perrin, A.; Flaud, J.- M.; Camy-Peyret, C.; Herman, M.; Hurtmans, D.; Guelachvili, G.
Issue Date: 1994
Abstract: The 6.2 $\mu m$ band of nitrogen dioxide is the strongest infrared band of this molecule. Then it is important, for atmospheric purposes, to get high quality parameters not only for the (main) $\nu_{3}$ $band^{1}$, but also for the (first hot) $\nu_{2} + \nu_{3} - \nu_{2}$ which appears clearly in the low frequency range of the $6.2 \mu m$ band. Using new Fourier transform spectra recorded at Brussels and at Paris, it has been possible to perform a new analysis of the $\nu_{2} + \nu_{3}$ and $\nu_{2}+ \nu_{3} - \nu_{2}$ bands of $^{14}N ^{16}O_{2}$, located at 4.2 $\mu m$ and 6.21 $\mu m$ respectively. From the spin-rotation levels of the (011) state obtained from these analyses, a set of molecular parameters (vibrational band centers, rotational spin-rotation and coupling constants) for the {(030),(011)} interacting states has been determined using a Hamiltonian matrix which takes explicitly into account the $(030)<->(011)$ Coriolis type interactions and the spin-rotation operators explicitly into account. Finally, the synthetic spectra of the $\nu_{2}+ \nu_{3}$ and $\nu_{2}+ \nu_{3} - \nu_{2}$ bands (line positions and intensities) were generated.
URI: http://hdl.handle.net/1811/13198
Other Identifiers: 1994-RH-03
Bookmark and Share