
An Analysis of the Copyrightability of the
"Look and Feel" of a Computer Program:

Lotus v. Paperback Software*

TABLE OF CONTENTS

I. INTRODUCTION 948
II. A BRIEF DISCUSSION OF COPYRIGHT LAW, COMPUTERS, AND THE

"LOOK AND FEEL" OF A COMPUTER PROGRAM 949
A. A Succinct Statement of the Issue 949
B. Several Basics of Copyright Law 950
C. "Look and Feel" Defined 953

1. Towards a Working Definition of
"Look and Feel" 953

2. Differing Views and the Growing Importance of
"Look and Feel" 955

m. THE HISTORY OF SOFTWARE LITIGATION BEFORE LOTUS 961
A. CONTU and the Initial Literal/Nonliteral Debate 961
B. "Look and Feel" Litigation Up To Lotus 964

IV. AN ANALYSIS OF THE LOTUS DECISION 968
A. The Application of the Idea/Expression

Dichotomy to Lotus 968
B. Functionality: Perhaps a Dangerous Precedent 973

1. The Question of Functionality and
Lotus 1-2-3 973

2. Functionality, Copyrightability, Macro
Languages, and the Structure of
Menu Commands 974

C. Substantial Similarity: The Test for Infringement 977
D. The Role of Policy in Lotus 978

V. THE IMPACT OF LOTUS: INDUSTRY OPINION AND RESPONSE . . 980
VI. A PROPOSED METHOD FOR EVALUATING THE COPYRIGHTABILITY OF

"LOOK AND FEEL" 984
VII. CONCLUSION 990

' Winner, 1991 Nathan Burhan Memorial Competition (Ohio State University
College of Law).

OHIO STATE LAW JOURNAL

I. INTRODUCTION

On June 28, 1990, Judge Robert Keeton of the United States District
Court of Massachusetts handed down a decision that was instantly hailed by
computer industry analysts as a harbinger of doom for the future of computer
software. The decision of Lotus Development Corp. v. Paperback Software
International' ended three years of intense debate over whether certain
elements (specifically, the "look and feel") of Lotus' spreadsheet program,
Lotus 1-2-3, were copyrightable, and, if so, whether or not Paperback's
spreadsheet, VP Planner, had infringed Lotus' copyright. The case pitted
industry giant and software spreadsheet leader Lotus2 against a comparative
industry midget, Paperback Software,3 and juxtaposed a minority of experts
favoring strong copyright protection against the majority of experts fearing
strong copyright protection.

Judge Keeton ruled in favor of Lotus, finding as a matter of law that
Paperback's VP Planner infringed part of the "look and feel" of Lotus' 1-2-
3.1 Before the dust had settled, Lotus filed suit against two other spreadsheet
vendors,5 settled with Paperback on the issues of damages and appeal, 6

1 740 F. Supp. 37 (D. Mass. 1990).
2 "Lotus 1-2-3 was... the spreadsheet leader, the state of the art in business software,

and was reaping handsome economic profits." Comment, The Incompatibility of Copyright and
Computer Software: An Economic Evaluation and a Proposalfor a Marketplace Solution, 978
N.C.L. Rnv. 977, 1004 (1988). In 1986, Lotus' market share of the spreadsheet industry may
have been as high as 70-80%, with few vendors offering a serious challenge to Lotus' market
dominance. See Radding, Race of Power vs. Position, COM~tITERWORLD 51 (Dee. 21, 1987).
As of 1990, while Lotus is still the industry leader, Borland's Quattro Pro has gained a
significant market share. See infra note 210.

1 Based on dollar volume of sales in 1987, Paperback was the fourth leading spreadsheet,
with $2.8 million in sales, compared to an estimated $198 million for Lotus (Microsoft was
second at $38 million, and Supercale was third at $12.5 million). In terms of units shipped,
Lotus was in first place with 750,000 units shipped (62%), and Paperback third at 60,000
units shipped. Lotus marketed its spreadsheet (Lotus 1-2-3) at $495, while Paperback
marketed its spreadsheet (VP Planner) at $99. See Radding, supra note 2.

"Lotus, 740 F. Supp. at 70.
s Two court days after Lotus v. Paperback was decided, Lotus filed suit against Borland

International, vendor of Quattro Pro (Lotus Dev. Corp. v. Borland Int'l, Inc., No. 90-11662-
K (D. Mass., filed July 2, 1990)), and against The Santa Cruz Operation, vendors of SCO
Professional (Lotus Dev. Corp. v. The Santa Cruz Operation, No. 90-11663-K (D. Mass.,
filed July 2, 1990)). Lotus and SCO have since settled out-of-court, with SCO agreeing to stop
manufacturing, distributing, and licensing SCO Professional. See generally Picarille, Lotus
Settles with SCO, but continues Battle with Borland, INFOWORLD 152 (June 24, 1991). As of
August, 1991, the Lotus v. Borland case remains in litigation.

[Vol. 52:947

COMPUTER COPYRIGHT

continued litigation with previously-joined litigant Mosaic Software,7 and sat
back to watch the impact of "one of the most closely watched cases in
software protection annals."'

This Paper will attempt to analyze the Lotus holding in terms of present-
day copyright law, discussing the merits of the holding, the prospective
impact on the software industry, and the prospects of precedential value. Part
II of this Paper discusses the background necessary to understand the Lotus
decision, including copyright law basics and an attempt to understand what
is actually meant by "look and feel." Part Ill discusses the judicial and
legislative history of computer copyright litigation leading up to Lotus. Part
IV discusses the Lotus holding itself, including a discussion of some potential
problem areas in the decision. Part V discusses an informal survey of the
response of, and impacts on, the computer industry. Part VI offers a
proposed method of viewing the decision.

II. A BRIEF DISCUSSION OF COPYRIGHT LAW,
COMPUTERS, AND THE "LOOK AND FEEL"

OF A COMPUTER PROGRAM

A. A Succinct Statement of the Issue

Granting that copyright protection has been held to cover literal
manifestations of a program such as code and the structure of code,9 should
copyright protection be extended to cover nonliteral elements of a computer
spreadsheet program, namely the "look and feel" of Lotus 1-2-3?

6 The parties settled for damages of $500,000, the withdrawal of VP Planner from the

market, and a promise from Paperback to refrain from appeal. For an interesting discussion
of the reason behind the settlement, see Ould, Legal Dispute Kept Paperback from Lotus
Appeal, 8 PC WEEK 138 (Jan. 21, 1991) (Paperback insurers forced settlement for financial
reasons when Paperback wanted to appeal).

I Lotus Dev. Corp. v. Mosaic Software, Civ. No. 87-74-K (D. Mass., filed March 6,
1987). The Mosaic case had originally been joined with the Paperback case, but was split.
Mosaic, vendor of the Lotus 1-2-3 clone Twin, argued its case on the week of Nov. 20, 1990,
and is expecting Judge Keeton's ruling sometime in 1991.

' Greguras, Implications of Lotus 1-2-3 Copyright Infringement Decision, 9 SOFTWARE

PROTECTION 1, 5 (July-Aug. 1990). Even before the decision in Lotus, one commentator
noted that "[t]he widespread press coverage given to computer 'look and feel' litigation
illustrates the tremendous commercial and legal interest in the potential expansion of copyright
law." Yen, A First Amendment Perspective on the Idea/Expression Dichotomy and Copyright
in a Work's "Total Concept and Feel," 38 EMoRY L.J. 393, 419 n.152 (1989).

9 See infra note 33.

1983]

OHIO STATE LAW JOURNAL

If such protection is extended, would a program, such as Paperback's VP
Planner, be considered an infringer if it contains significant "cloning" of
Lotus 1-2-3's "look and feel," specifically, direct copying of the structure,
sequence, and organization of the menu command system?

B. Several Basics of Copyright Law

Copyright law begins with the Constitution of the United States. The
Constitution grants power to Congress "To promote the Progress of Science
.. by securing for limited Time to Authors... the exclusive Right to their

S.. .Writings."
10

In exercising such power, Congress has enacted several copyright acts
since the inception of the Constitution. The latest of the acts, the Copyright
Act of 1976,11 occupies the field of copyright, abrogating overlapping state
law copyright doctrine and previous Copyright Act doctrines for works
authored after January 1, 1978. It is this Act with which this Paper is
concerned.

Section 102 of the 1976 Act states the basic requirements for copyright
protection: "Copyright protection subsists . . . in original works of
authorship fixed in any tangible medium of expression"12 Thus, to be
protectable, a creation must pass three basic tests: 1) it must be original; 2)
it must be a work of authorship; and 3) it must be fixed in a tangible medium
of expression.

To be "original," a claimant must pass one of two tests: if a claimant
originated a work, the work must be "one man's alone" (i.e., there is no
minimal level of artistic merit required); 3 or if the claimant produced a
copy of a work, the copy must show a "modicum of creative work," 4 and
prove that the variation between the original and the copy is more than
trivial.' 5

To help explain what "works of authorship" are, Congress created a
nonexclusive list of works in the 1976 Act which includes: "(1) literary

10 U.S. CONST., art. I, § 8, cl. 8.

1 Codified at 17 U.S.C. § 101-914 (1989).
12 17 U.S.C. § 102(a)'(1989).

13 Bleistein v. Donaldson Lithographing Co., 188 U.S. 239, 250 (1903).
14 Amsterdam v. Triangle Publications, Inc., 189 F.2d 104, 106 (3d Cir. 1951).

,5 Alfred Bell & Co. v. Catalda Fine Arts, Inc., 191 F.2d 99 (2d Cir. 1951).

[Vol. 52:947

COMPUTER COPYRIGHT

works; ... [and] (6) motion pictures and other audiovisual works
While a computer program is not explicitly included in this list, computers
"fall squarely" 17 within the statutory definition of "literary works. " "

The third test, fixation in a tangible medium, is a throwback to the
constitutional requirement of a "writing." To satisfy this requirement, a work
must be "now known or later developed, from which [it] can be perceived,
reproduced, or otherwise communicated, either directly or with the aid of a
machine or device. " 19

In addition to the three-pronged test, several other limitations to
copyrightability are present: specifically, copyright protection does not extend
to any "idea, procedure, process, system, method of operation, concept,
principle, or discovery."' These limitations are a statutory codification of
several judge-made laws that are pertinent to all prospective copyright
protection: specifically, the idea/expression dichotomy, the limitation against
functional (utilitarian) items, and the literal/nonliteral distinction. Each of
these concepts will be discussed briefly.

The most basic of these concepts is the idea/expression dichotomy.2"
Briefly stated, copyright protection extends only to the expression of ideas,
but not the ideas themselves. Drawing the line between ideas and expression
is not easy, however, and is a central issue in the Lotus case. The concept
of merger is tangential to the idea/expression dichotomy; specifically, if there
are only a small number of ways to express an idea,' or if the expression
is inevitably bound up in the idea,' then the idea and the expression are
said to merge, and the expression is not copyrightable. The theory behind the
idea/expression dichotomy and merger helps to aid in understanding; namely,
if an idea is copyrightable, a monopoly may be created that would occupy an
entire area of thought, preventing others from being able to express such

11 "Works of authorship include the following categories: (1) literary works; (2) musical
works, including any accompanying words; (3) dramatic works, including any accompanying
music; (4) pantomimes and choreographic works; (5) pictorial, graphic, and sculptural works;
(6) motion pictures and other audiovisual works; and (7) sound recordings." 17 U.S.C. §
102(a) (1989).

17 Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 49 (D. Mass. 1990).
"8"'Literary works' are works, other than audiovisual works, expressed in words,

numbers, or other verbal or numerical symbols or indicia, regardless of the nature of the
material objects, such as books, periodicals, manuscripts, phonorecords, film, tapes, disks,
or cards, in which they are embodied." 17 U.S.C. § 101 (1989).

'9 17 U.S.C. § 102(a) (1989).
20 17 U.S.C. § 102(b) (1989).
21 See Baker v. Selden, 101 U.S. 99 (1880).

See Morrissey v. Procter & Gamble Co., 379 F.2d 675 (1st Cir. 1967).
See Continental Casualty Co. v. Beardsley, 253 F.2d 702 (2d Cir. 1958).

1983]

OHIO STATE LAW JOURNAL

ideas. To avoid this type of protection, copyright does not extend to an idea
or to an expression whose idea has merged with that expression.

A second limiting concept is the denial of copyright protection to
functional, utilitarian, or useful articles.' The protection of any such article
is governed by patent law. Thus, if an article has any use, specifically as a
process, system, or operation, copyright does not protect such functional
elements of the article. Copyright protection does, however, cover any
nonfunctional aspects of such articles, as long as such aspects pass the three-
pronged statutory test and are expressions, not ideas. Just because an aspect
of an article is functional does not deny copyright protection to nonfunctional
elements. Tangentially, if a work has both functional and nonfunctional
purposes, only the nonfunctional aspects of the work are protectable.' The
issue is said to be one of "separability," namely, whether or not the
functional and nonfunctional aspects can be separated from each other. If
such aspects are not separable, copyright protection can not be afforded.

A third concept of copyright law is the distinction between literal and
nonliteral elements. A literal element is one that is a work of literature, 6

an element written in some form. Such literal elements are protectable by
copyright. Additionally, however, it is well-settled law that some nonliteral
elements of expression are also subject to copyright protection.2 7

Ever present in all determinations of protection is the policy reason
behind copyright protection. "The immediate effect of our copyright law is
to secure a fair return for an 'author's' creative labor. But the ultimate aim
is, by this incentive, to stimulate artistic creativity for the general public
good."' Congress thus grants limited monopolies to authors in order to
serve the public welfare.29 As one commentator suggests, noting that the

24 Useful articles are defined as "article[s] having an intrinsic utilitarian function that is not

merely to portray the appearance of the article or to convey information. An article that is
normally a part of a useful article is considered a 'useful article."' 17 U.S.C. § 101 (1989).

1 "The design of a useful article . . . shall be considered a . . . [copyrightable]
work ... if, and only to the extent that, such design ... can be identified separately from,

and [is] capable of existing independently of, the utilitarian aspects of the article." 17 U.S.C.
§ 101 (1989).

26 Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 51 (D. Mass. 1990).

27 Examples of this would be the expression of the setting, characters, or plot in a play.

See, e.g., Nichols v. Universal Pictures Corp., 45 F.2d 119 (2d Cir. 1930).

2 Sony Corp. v. Universal City Studios, Inc., 464 U.S. 417, 432 (1984).

1 Lotus, 740 F. Supp. at 52.

[Vol. 52:947

COMPUTER COPYRIGHT

author's interests are almost subservient to society's, the arrangement is
actually "quid pro quo. " '

If copyright protection is established, the next element in a copyright
infringement claim is proof of the infringement. This is carried out by
determining whether the alleged infringing work is "substantially similar" to
the original work.

C. "Look and Feel" Defined

The phrase "look and feel of a program" is a term of art for an elusive
concept. Many people have used the phrase in many different ways, a
complication that may, more than any other factor, have lead to the great
confusion in the software industry today.3 This Paper will initially attempt
to provide a working definition of "look and feel" in an effort to explain the
basic concept. The several definitions of courts and users will be explored,
followed by a discussion of the place and importance of "look and feel" in
the software industry.

1. Towards a Working Definition of
"Look and Feel"

In general, the "look and feel" of a computer program can be defined as
the elements of a program that a user of the program will deal with upon
using the program. This is indeed a very broad definition and it is first
important, and in fact easier, to discuss what the phrase "look and feel" does
not encompass.

The "look and feel" of a program generally refers to software elements
of a computer, not hardware.32 In terms of software, "look and feel" also
does not describe any element of a program that a user can or will not ever
see directly; that is, "look and feel" does not encompass any elements of the

"' U.S. Congress, Office of Technology Assessment, Communication and Information
Technologies Program, Staff Paper on Intellectual Property Proteclionfor Computer Software,
reprinted in SOFTWARE PROTECTION 12, 14 (March 1990) [hereinafter "Staff Paper"].

3' See infra notes 176-84 and accompanying text.
32 This is, perhaps, an overstatement. Because, for a user to be able to use software,

hardware is necessary, the particular type of hardware used can and will change the way a
user views and uses a program (examples would be certain programs that will run only with
a certain type of processor, or certain programs that will run only with a certain type of video
screen [i.e., color versus monochrome]). Yet these changes deal only with the limitations of
hardware to run a particular program; here, "look and feel" encompasses certain elements of
software of which the basics will remain constant, regardless of what hardware is used.

19831

OHIO STATE LAW JOURNAL [Vol. 52:947

source code, object code,33 or any structures or organizations thereof that
a software developer will program and the computer will read and run.
Likewise,.microcode, disk operating systems,' and any other program that
runs "behind the screens," (i.e., that the user will not see or deal with while
using a program) are not covered by "look and feel." Additionally, any user
support, such as textual documents and training, are not included in "look
and feel."

What'is left after such omissions are any elements of the program that a
user can perceive (see, hear, etc.) and use to interact with the computer. This
includes, but is not limited to, the way commands are placed on the screen
and accessed, the way screens interact with each other, the process a user
will go through to invoke a specific function, the organization and interaction

" All programs are sequences of instructions called, collectively, code. There are several
different types of code. Microcode are commands physically placed inside the computer
(untouchable by the user and actually encoded into hardware) that control certain basic
internal actions of the computer (such as controlling communications between the CPU and
the main memory). Source code is a phrase used to describe a set of commands as written by
a person. This code, in and of itself, is not legible to a computer. To perform these commands
(of the source code), a computer must translate human-written source code into object code,
which is a series of instructions that the computer itself can understand.

Source code is thus the method of communication that a programmer (a person who
writes commands for a computer to follow) uses to instruct a computer. There are several
different types of commands, or languages, that programmers use to communicate with the
computer. One language, machine code, is the language that computers speak; machine code
is thus the same as object code. Few programmers use this language any more. Other
languages offer more conveniences to programmers by making source code more like English,
then providing methods to convert the source code to machine-readable object code. Examples
of such languages are Assembly language (the crudest), "high-level" languages such as
PASCAL, COBOL, and BASIC (languages close to English), and "next-generation" languages
such as C or ADA (which attempt to allow programmers to program roughly in ideas instead
of instructions).

I In general, there are two types of software, operating programs and application

programs. Operating programs, such as DOS and OS/2, control the internal functioning of the
computer, while application programs are programs such as wordprocessors, spreadsheets,
etc., which attempt to command the computer to perform functions towards a particular
applied end.

COMPUTER COPYRIGHT

of a program's functions, and, maybe, any macro code35 facility based upon
such program elements. 6

A good rule of thumb is that, if you are a user, "look and feel" is
whatever you see, and whatever steps you have to take to make the program
do what you want it to do.

2. Differing Views and the Growing Importance
of "Look and Feel"

As the United States Congress, Office of Technology Assessment has
recognized, "[t]he legal and technical communities do not have consistent
definitions for important terms like. . . 'interface.' Without agreement on
a common language, discussing protection issues is extremely difficult." 37

Neither the legal commentators, the computer industry commentators, nor the
courts have come up with a consistent definition of "look and feel."
Concepts such as "user interface," "total concept and feel," and "structure,
sequence and organization" have been used interchangeably. The overall
concept is the same, but the details differ greatly. As I will contend, it is this
difference in understanding that has led to a great deal of the misinter-
pretation of the Lotus decision. The following is a survey of differing
definitions.

The legal commentators are perhaps the most divided. They can be
separated into two general groups: those who believe that the terms "user
interface" and "look and feel" are interchangeable (and thus encompass
almost all, if not all, nonliteral elements of a program), and those who
differentiate the terms, believing that different legal standards apply to each.

I Macro code is a type of program that a user creates to perform certain sequences of
commands with simpler commands. This code must be seen as separate from any of the codes
previously defined. As a user interacts with a program, the user is said to give the program
commands as to which functions to perform. Many of these command sequences are boring,
mundane, and do not change dependant upon application. Users may wish for some way of
storing a sequence of user commands, so that the commands could be executed once,
remembered by the computer, and then be executed again by a shorter and simpler sequence
of commands.

31 This element, as cautiously recognized by the Lotus court, will be discussed in more
detail. See infra notes 147-57 and accompanying text.

37 Staff Paper, supra note 30, at 13.

19831

OHIO STATE LAW JOURNAL

In the minority" are the commentators who do not differentiate between
the terms.39 One commentator, for example, defined both "user interface"
and "look and feel" as "[tihe visual and tactile 'aura' created by the
particular layout of displays and input formats. " '

The majority of commentators differentiate between "user interface" and
"look and feel," with the largest subset defining "user interface" as one
element of "look and feel." 41 Those commentators that define "look and
feel" without defining "user interface" find that "look and feel" includes all
computer/user interactions and other elements, such as keyboard interfaces,
which seem to impliedly include "user interface" within "look and feel. "42

The commentators who just define "user interface" seem to include many
forms of interactions in their definitions, such as screen displays, keyboard

' See generally Curtis, Engineering Computer "Look and Feel": User Interface Technology
and Human Factors Engineering, 30 JURIMETRICs J. 51 (1989).

39 See, e.g., Yen, supra note 8, at 419 n.152 ("Briefly stated, the 'look and feel' of a
computer program consists of the design and presentation of the software's user interface.").

4 Id.
41 See, for example, Lundberg, Michel, and Sumner, who state:

In general, "look and feel" can be defined as a set of functional capabilities of a
programmed computer and the way it "interacts" with a user. It includes "user
interface" features and elements such as menus, icons and status fields, function key
assignments and commands, the set of functions performed by a program computer, as
well as "artistic" features as might be found on a screen display.

Lundberg, Michel, & Summer, The Copyright/Patent Interface: Why Utilitarian "Look and
Feel" Is Uncopyrightable Subject Matter, 6 COMPUTER LAW. 5, 5. See also Note, Single
Copyright Registration for Computer Programs: Outdated Perceptions Byte the Dust, 54
BROOKLYN L. REv. 965, 976 n.55 (1988) (quoting Russo & Derwin, Copyright in the "Look
and Feel" of Computer Software, 2 COMPUTER LAW. 1 (Feb. 1985)) ("Such factors as design
and presentation, including the screen displays and general user interface through which the
user interacts with the computer, make up the 'look and feel' of a program.").

4 2 See, e.g., Bhojwani, CopyrightLaws and the Nature of Computer Software, 9 SOFTWARE

PROTECTION 1, 2 (June 1990) ("Taken together, the idea and the look and feel constitute the
architecture of the software, much as they would for a building. This includes, for example,
the style of interaction with the software using the keyboard and the mouse, the actual layout
of the screen images, etc."); Conley, Look and Feel: In Defense of the Current Case Law, 5
COMPUTER LAW. 1, 2 (Dee. "1988) ("[Tihe windows, pull-down menus, and more generally,
the general ease of use of the Apple Macintosh computer comprise its look and feel;" and
"[t]he look of a program can be distinguishable from its feel: the look consists of the
audiovisual features that the user sees and/or reads, whereas the feel consists of the overall
impression of user-friendliness that the program conveys."); Id., (quoting Siegel and Derwin,
Copyright Infringement of the 7.ook and Feel' of an Operating System by Its own
Applications Programs, 4 COMPUTER LAW. 1, 2-3 (Jan. 1987)) ("The look and feel includes
'both audiovisual components ... andfimctional components."').

[Vol. 52:947

COMPUTER COPYRIGHT

interactions, and menus.43 Other commentators explicitly reject the uses of
other phrases.'

Computer industry analysts seem similarly confused. Some follow the
wording of the Lotus case,' while others confuse the issue with different
wordings.47

There is no doubt that the confusion among the commentators derives
from the confusion of the courts. The earliest "look and feel" cases did not
even attempt to define "look and feel" or "user interface," instead discussing
the copyrightability of menu screens, sequence of screens, structure and
organization of the user interface,48 or screen displays and status screens.

4 See, e.g., Note, supra note 41, at 973 n.40 ("The user interface includes the keyboard
* .. , the command sequences ... and the screen displays.");

User interfaces include all of the devices by which the human user can interact with the
computer in order to accomplish the tasks the computer is programmed to perform.
Screen displays of images and text are often important components of the user interface,
but user interfaces may also include hardware extensions (such as keyboards, "mice,"
joysticks, or switches) and sounds

Computer Software and Copyright Protection: The "Structure, Sequence and Organization"
and "Look and Feel" Questions, SoFTWARE PROTECTION 7, 13 (July 1989); Bing, Look and
Feel the Norwegian Way, 8 SOFmwARE PROTECTION 1, 1 (Dec. 1989) ("Mhe choices
displayed to the user as menus, and the signals of the user by the keyboard... is the user
interface.").

4 See, e.g., LaST Frontier Conference Report on Copyright Protection of Computer
Software, 30 JURImETRICS J. 15, 27 (1989) ("[IThe use of terms such as 'structure,
sequence, and organization,' 'look and feel,' or 'total concept and feel' obscures rather than
assists in the application of copyright principles to software interfaces."); Samuelson,
Reflections on the State of American Software Copyright Law and the Perils of Teaching It,
13 COLUm. J.L. & ARTS 61, 69 (1988) ("One can understand why Lotus and Apple might
want to substitute 'look and feel' for 'total concept and feel' as a focus of their user
interface litigations, in view of the fact that the copyright statute specifically states that
'concepts'.. . are not protectable by copyright.").

's See infra notes 176-84 and accompanying text.
46 See Pane, The only Sure Conclusion of Lotus' Victory is that Lawyers will be Partners

in Development, INFOWORLD 43, 44 (July 23, 1990) (quoting Judge Keeton's definition of the
Lotus user interface as being the "menus and keystrokes."). It is unclear as to whether the
menus and keystrokes are considered as part of the interface or the entire interface.

47 See Schachter, Software Protection in the Throes of a Legal Morass, 33 DATAMATION
49 (June 1, 1987) (interpreting the case of Whelan Assocs. Inc. v. Jaslow Dental Laboratory
Inc., 797 F.2d 1222 (3d Cir. 1986), as holding "structure, sequence, and organization...
has been termed a program's 'look and feel' . . .").

I Broderbund Software, Inc. v. Unison World, Inc., 648 F. Supp. 1127, 1132 (N.D. Cal.
1986). See also discussion infra note 88.

1983]

OHIO STATE LAW JOURNAL

Later cases attempting to draw inferences from these cases also failed to
define their terms, discussing instead the external sequencing and flow of
screen displays and the internal method of navigation between screens.'

Other courts have attempted to define their terms. One court stated: "The
user interface, also called the 'look and feel' of the program, is generally
the design of the video screen and the manner in which information is
presented to the user."51 Another court borrowed a definition from the
seminal case of Whelan Assoc., Inc. v. Jaslow Dental Laboratory, Inc.52

and defined user interface as the "overall structure and organization of a
computer program, including its audiovisual displays, or screen 'look and
feel.'" '53 Judge Keeton in Lotus does not attempt to define either term
himself, instead relying on plaintiff Lotus' definition. Originally claiming that
the phrase "look and feel" described Lotus' copyrightable elements, Lotus
amended their arguments, claiming subsequently that Lotus 1-2-3's
copyrightable elements are its "user interface," with "user interface" defined
as "such elements as 'the menus (and their structure and organization), the
long prompts, the screens on which they appear, the function key
assignments, [and] the macro commands and language.'""

There is obviously a great deal of confusion as to exactly what "look and
feel" and "user interface" mean, and, more dangerously, great confusion
over whether a court's holding actually was dependant upon these meanings.
The above survey of definitions was not an attempt to derive a general
definition or determine which definition was "best." 5 The intention was to
show the confusion with the issue, and hint at the danger of such confusion.
It seems very easy for a case to hold, for example, that a menu structure is
part of the user interface, which is part of the "look and feel" of the
program. Only the menu structure could be held as copyrightable, and
subsequently an infringement. Yet, because of the confusion of terms, a

49 Digital Communications Assoc., Inc. v. Softklone Distrib. Corp., 659 F. Supp. 449,455
(N.D. Ga. 1987). See also discussion infra note 94.

so Manufacturers Technologies, Inc. v. Cams, Inc., 706 F. Supp. 984, 994-95 (D. Conn.

1989),
"' Johnson Controls, Inc. v. Phoenix Control Sys., 886 F.2d 1173, 1175 n.3 (9th Cir.

1989).
52 797 F.2d 1222 (3d Cir. 1986).
3Telemarketing Resources v. Symantec Corp., 12 U.S.P.Q.2d (BNA) 1991, 1993 (N.D.

Cal. 1989).
4 Lotus Dev. Corp. v. Paperback Software Int'l, 740 F. Supp. 37, 63 (D. Mass. 1990).

s But if one were to be picked as the most accurate, the courts that refused to define their
terms, while holding that very detailed elements of a program were infringing (i.e., it is the
menu structure that is copyrightable and was infringed) probably cause the least confusion as
to what they hold. The precedential value of such cases, however, may not be so simple.

[Vol. 52:947

1983] COMPUTER COPYRIGHT

commentator could easily suggest that the court held that the "user interface"
was copyrightable (i.e., the whole interface). Not only would this convey an
incorrect idea, but another commentator may state that the case stands for the
prospect that the "look and feel" of a program is now copyrightable. This is
also an incorrect overstatement of the holding, but a definitionally "correct"
one depending upon which definition above is used. Such misconceptions
could easily permeate an industry, spreading an incorrect and overbroad
interpretation of a case's holding.

To allow a broad generalization: it seems that the term "look and feel"
is a superset of the term "user interface." While Judge Keeton at times uses
the phrases seemingly interchangeably, this Paper will continue to use the
most expansive phrase ("look and feel") to discuss the copyrightability of
nonliteral elements of programs. Any other, more restrictive uses (such as
"user interface") will be explicitly stated.

Regardless of how it is defined, the "look and feel" of a computer
program has become a critical element of all software. Over the last decade
or two, as hardware costs have decreased and hardware speeds have
increased,56 the role of user-friendly software has grown in importance, to
the point presently when a program's "look and feel" could very well be its
most important and marketable factor. 7

56 A long time ago in computer years, namely over ten years ago, the concept of the

importance of the "look and feel" of a program was in its infancy. Hardware was much

slower and more expensive than it is now. When making a determination of which product
to use, a user or a business placed the program's interface far down on the list of important
items, for the cost difference in the speed and power of a machine far outweighed the cost
difference in training people to use the machine and program. In short, the people cost was

much less than the computer cost. Then, several events in the computer industry changed all
of the above.

First, hardware continued an increasingly fast spiral towards decreasing price and
increasing speed and power. The machines themselves could do more for less, and eventually
the cost of training people and using people began to exceed the cost of using computer time.
Secondly and concurrently, the software industry saw an explosion of software vendors, the
competition of which heightened the quality of software. Thirdly, and perhaps most
importantly, the introduction of the IBM PC started a course of standardization in the
computer industry that allowed many companies to compete for many business processes. By
1988, "U.S. independent software developers' revenues exceeded $25 billion, up from $20
billion in 1987." Staff Paper, supra note 30, at 12, 14.

1 The sum total of the occurrences in note 56 lead to the present-day importance of the
"look and feel" of a program. See generally Curtis, supra note 38, at 52 ("In contrast to its
neglect from the 1940s through the 1970s, during the last decade the user interface has
become a paramount concern in designing computer systems."); Note, Copyright Protection
for Computer Screen Displays, 72 MINN. L. REV. 1123, 1138 (1988) (paraphrasing B.
SHNEIDERMAN, DESIGNING THE USER INTERFACE: STRATEGIES FOR EFFECTIVE HUMAN-
COMPUTER INTERACTION 3, 8-9 (1987)) ("Designers invest much creative energy toward

OHIO STATE LAW JOURNAL [Vol. 52:947

As such, software vendors began to change the way software was
developed." Instead of spending the majority of their time programming,
vendors now spend the majority of time and money studying and designing
the "look and feel" of a program;" this is the element by which purchasers
are most likely to make purchasing decisions.' With such a significant
investment in the "look and feel" of a program came a wish to protect the

making the user interface of even the most complex programs simple and unobtrusive.");
Bendekgey, Copyright Protection for Computer Software Visual Displays: Protecting a
Program's Look and Feel, 11 SOFTWARE PROTECTION 1, 1 (Jan. 1988) ("The development
of the mass personal and business microcomputer markets has created a corresponding demand
for computer software that can be used with relative ease by people having little familiarity
with computers.").

With so many applications running on each type of computer, a user or business was no
longer forced to stay with difficult-to-use programs that conserved computer resources but
wasted people resources. Id. Users instead shopped for programs that served a needed purpose
and were easy to use. While concerns such as how a program was written or organized faded,
concerns as to how the program augmented human use began to rule. See Curtis, supra note
38, at 52.

1 Menell, An Analysis of the Scope of Copyright Protection for Application Programs, 41
STAN. L. REv. 1045, 1052 (1989) ("mhe process by which user tasks are defined and
interfaces designed has developed into a hybrid science drawing on a wide range of
disciplines."); See also Curtis, supra note 38, at 52-53, who states:

The design and engineering of the user interface is now emphasized during computer
systems development for five reasons. First, advances in computer science and
electrical engineering have placed better technology at the disposal of those
designing and building user interfaces . . . Second, with better interfaces for
nonprogrammers, the user interface has become a crucial issue in marketing
computer systems Third, the user interface typically accounts for at least 40
percent, and sometimes much more, of the computer instructions written in building
a commercial application program. ... Fourth, the user interface is a growing
concern ... because standards are being built around them... [and] [flinally, the
cost of learning a software package is substantial.

(Emphasis added, citations omitted).

9 See supra note 56; Note, supra note 57, at 1138 ("Designers invest much creative

energy toward making the user interface "); Ranney, Look and Feel' Discussed as

Major Copyright Issue, INFOWORLD 13 (Nov. 11, 1985) ("The design and presentation or, in
short, the 'look and feel' of a computer software product often involves much more creativity
and often is of much greater commercial value than the program code which implements the
product.").

60 See A. CLAPES, SOFTWARE, COPYRIGHT, & COMPETITION: THE "LOOK AND FEEL" OF
THE LAW 202-03 (1989).

COMPUTER COPYRIGHT

investment.6 That wish propels all advocates of "look and feel"
copyrightability today.

III. THE HISTORY OF SoFrWARE LITIGATION

BEFORE LoTus

A. CONTU and the Initial Literal/Nonliteral Debate

In 1980, the congressionally created National Commission on New
Technological Uses of Copyrighted Works (CONTU) produced several
recommendations and a lengthy legislative history pertaining to the
copyrightability of computer software. While perhaps out of date at
publication,62 Congress recognized CONTU's observation of a need for
protection of software, and amended sections 101 and 117 of the Copyright
Act of 1976. To Section 101 was added a definition of "computer
program,"6 and section 117 was amended to allow certain legal copying of
computer programs.' While the final report of CONTU did not make any
recommendations as to the copyrightability of the "look and feel" of a
program (arguably an even fuzzier concept then than now), the legislative
history makes clear that the issue was debated and that both sides of the issue

" Staff Paper, supra note 30, at 13 ("[S]oftware developers have modified their ideas
about what aspects of software need the most protection. For example, as writing and
checking code becomes more automated (computer-aided software development), software
producers want to protect the logic and idea of a program, rather than just the effort required
to code and debug it."); Bendekgey, supra note 57, at 2 ("[R]ecent developments in the mass
market for computer programs have provided one group of companies with a strong incentive
to protect their rights in certain aspects of their technology.") See also Russo & Derwin,
Copyright in the "Look and Feel" of Computer Sofiware, 2 COMPUTER LAW. 1, 1 (Feb. 1985)
and Bhojwani, supra note 42, at 10.

' "When Congress created... [CONTU] in 1974, the 'PC revolution' had not yet begun
to bring desktop computing power to millions of individuals." Staff Paper, supra note 30, at
14. As CONTU was debating, the PC industry was just in its youth. "[B]y the time CONTU
issued its final report in 1978, the PC revolution was underway, creating a new generation
of computer users . i..." Id. There was no way for CONTU to foresee the booming new
industry. In fact, "market changes... [have caused] almost... [a] hundredfold increase in
PC use since CONTU." Id.

' "A 'computer program' is a set of statements or instructions to be used directly or
indirectly in a computer in order to bring about a certain result." 17 U.S.C. § 101 (1989).

6 17 U.S.C. § 117 states, in sum, that limited archival copies of computer programs are
legal if used only for archival purposes.

1983]

OHIO STATE LAW JOURNAL

were fortified by experts.' One thing that CONTU did recognize, however,
was the "inherent difficulties in applying copyright. .. to software."' As
will be seen, this observation is a common thread that holds all later software
copyright cases together; specifically, a common agreement that copyright
law does not apply well to software, and that some bending of the law is
necessary to apply the law to computer software.

One month before the results of CONTU were released, the Northern
District of Texas decided Synercom Technology v. University Computing,67

a case that was truly ahead of its time.' In Synercom, the court determined
that the alleged infringement of an input format was not an infringement
because the idea of the input and the expression of the input merged, and
thus was not copyrightable.1 Synercom became the first case to apply the
idea/expression dichotomy to "look and feel."'

Synercom aside, the courts had a much more basic issue facing them
first: whether or not the literal manifestations of a program (the source code
and object code) were copyrightable. The issue came about as a natural side
effect of the changing computer industry; one developer, seeing a profitable
program, would simply copy the code,7' or parts of the code, outright.

The first waver of cases held that the literal manifestations of a
program, namely the source code and the object code, were copyrightable.73

a The debate can be summarized by the dispute between Melville Nimmer and
Commissioner Hersey. Nimmer felt that "the rights in computer programs would be the same
as the rights in other 'literary works,'" or, more generally, that copyright protection should
extend beyond the literal aspects of a program to its nonliteral aspects. Commissioner Hersey
felt the opposite, stating that "programs should not in all respects be protected in the same
manner as other copyrighted works." Clapes, Lynch, & Steinberg, Silicon Epics and Binary
Bards: Determining the Proper Scope of Copyright Protection for Computer Programs, 34
UCLA L. REv. 1493, 1586 (1987). As will be seen infra notes 72-85, courts have chosen
generally to follow Nimmer's views.

' Staff Paper, supra note 30, at 14.
67 462 F. Supp. 1003 (N.D. Tex. 1978).

' Bender, Software Copyright: "Look and Feel" Issues, SOFTWARE PROTECTION 1 (Nov.
1989).

6 Synercom, 462 F. Supp. at 1005.
70 Id. at 1009.

71 Bendekgey, supra note 57, at 2.

' See generally Clapes, Lynch, & Steinberg, supra note 65, and Bender, supra note 68,
for general discussions dividing the cases to be discussed into waves.

73 Apple Computer, Inc. v. Franklin Computer Corp., 714 F.2d 1240, 1243 (3d Cir. 1983)
(seminal case holding source and object code copyrightable).

[Vol. 52:947

COMPUTER COPYRIGHT

This, in effect, is the most settled issue of law in the whole software
copyright debate.74

As programs continued to get more complicated and lengthy, the
designing and structuring of a program took more and more creative work
and effort.7' Courts were soon faced with attempts to extend copyright
protection beyond the literal elements of program code, specifically into
nonliteral elements of code such as the structure, sequence, and organization
of the code.

The earliest case other than Synercom to deal with this extension was SAS
Institute v. S&H Computer Systems.76 SAS held that a program, even though
written in a different language for another computer, substantially copied the
"original structure" of the plaintiff's program, and was thus an
infringement.'

Following in this vein of thought, one year later the Third Circuit
decided the seminal structure and sequence case of Whelan Associates v.
Jaslow Dental Laboratory, Inc.78 Whelan extended the scope of copyright
protection into the nonliteral realm of the "structure, sequence, and
organization"79 of a program. Addressing the idea/expression dichotomy,
the Third Circuit applied a "pragmatic" test' between idea and expression,
balancing the ultimate goal of copyright and other policy considerations, to
hold that at least some nonliteral elements of a program were expression-in
this case, the structure, sequence, and organization of the code. Whelan
stated that there was no bright-line test available to determine what was idea
and what was expression; the decision was necessarily ad hoc, as determined
by Judge Hand years ago.8'

The response to Whelan at first was not uniformly favorable. The Fifth
Circuit one year later explicitly rejected Whelan in Plains Cotton Cooperative
Association v. Goodpasture Computer Service, Inc.," holding that
"organizational copying" was not an infringement because the idea and
expression of the program merged.' While Plains seems irreconcilable with

' Samuelson, supra note 44, at 61.
75 See supra notes 58-61 and accompanying text.
76 605 F. Supp. 816 (M.D. Tenn. 1985).

7' Id. at 830.
7' 797 F.2d 1222 (3d Cir. 1986).
7' Id. at 1248.
'o Id. at 1235.
81 Id.

2 807 F.2d 1256 (5th Cir. 1987).
' Id. at 1260, 1262.

1983]

OHIO STATE LAW JOURNAL

Whelan, the fact that the program in Plains was greatly dictated by market
forces may mitigate the lack of extension of copyright expression to
nonliteral elements."

The initial response to these cases was confusion. One commentator
suggested that the law depended upon in which circuit one lived. ' As time
passed and other courts addressed further issues, a clear pattern began to
develop that the Whelan court was to be followed, at least in terms of
holding that copyright protection extends to some nonliteral elements of a
program.

At this point, courts had only determined issues that related directly to
the protection of the program code, whether literal manifestations (line-by-
line code) or nonliteral elements (structure, sequence, and organization). The
courts were relatively unanimous in protecting literal manifestations, pointing
to CONTU for support. As the requested protection moved further and
further away from the conclusions of CONTU into the realm of nonliteral
elements of a program, the courts became more unsure and divided. When
the commentators and courts had barely gotten used to the Whelan decision,
the computer industry changed again, and software developers began to ask
for further extended protection. The stage was set to attempt to extend
copyright protection to the "look and feel" of a program.

B. "Look and Feel" Litigation Up To Lotus

Several post-Whelan cases have directly addressed the issue of the
copyrightability of "look and feel." While the decisions are split, there seems
to be a general trend towards extending nonliteral software copyright
protection to some "look and feel" elements.

The first post-Whelan case to address the "look and feel" issue was
Broderbund Software v. Unison World. 6 In Broderbund, the court
borrowed from Whelan in holding that the "overall structure, sequencing and
arrangement of screens" was copyrightable.' While this decision is
significant in that it extended the nonliteral protection of software beyond
mere code and into the realm of audiovisual displays, the misuse of the code-
describing phrase from Whelan (structure, sequence, and organization) places

"'The court in Plains held specifically that "market factors play a significant role in
determining the sequence and organization of cotton marketing software, and we decline to
hold that those patterns cannot constitute 'ideas' in a computer context." Id. at 1262.

85 Schachter, supra note 47, at 55 ("At present, the scope of software copyright protection

...depend[s], at least in part, upon geography.").
86 648 F. Supp. 1127 (N.D. Cal. 1986).

'7 Id. at 1128.

[Vol. 52:947

COMPUTER COPYRIGHT

the theory of the decision in some doubt.8 In terms of the idea/expression
dichotomy, however, the court was quite explicit, holding that since there
were many ways of expressing the purportedly infringing screen display,
such display was obviously the expression of an idea and not the idea
itself.89 The court found that the display "was dictated primarily by artistic
and aesthetic considerations, and not by utilitarian or mechanical ones. " '

The initial reaction to Broderbund was as negative as the initial reaction
had been to Whelan. One commentator suggested that the extension was
"dangerous" in terms of first amendment consequences.9" Other
commentators, noting the confused use of language from Whelan, suggest
that the Broderbund case is actually an equity case, in which the court was
so outraged by the extent of copying that the court was going to find an
infringement one way or the other.'

One year later, the District Court for the Northern District of Georgia
completely disagreed with Broderbund in Digital Communications Associates,
Inc. v. Softidone Distributing Corp.' The Softldone decision had two main
parts: first, the court held that the copyright on a computer program does not
extend to the nonliteral screen displays; 9' second, however, the court held
that a second and independent copyright held by the plaintiff, one that
covered the screen display as an audiovisual work, was valid and had been
infringed.95

While the court did find an infringement, the Sofiklone case is significant
for not finding an infringement based upon the copyrightability of a nonliteral
aspect of code. Sofiklone and Broderbund stand on opposite ends of the "look
and feel" spectrum. One year later, however, the precedential value of
SoftMlone was to be put at issue by an action of the Copyright Office.

' In fact, the Broderbund court cites Whelan as standing for the proposition that protection
extends "to the overall structure of a program, including its audiovisual displays." Id. at 1133.
While Whelan discussed the screen displays in terms of distinguishing idea from expression,
the Whelan court did not pass upon the copyrightability of an audiovisual display.

89 Id. at 1132.

o Id. at 1134.

91 Yen, supra note 8, at 416.
92 Conley, supra note 42, at 4 (Broderbund is "a powerful equity case in which the court

appropriated copyright language already in currency with little technical regard for the
computer issues.").

9 659 F. Supp. 449 (N.D. Ga. 1987).

I Id. at 455. The court reasoned that the displays were not copyrightable because
completely different programs could create the same display. Id. at 456.

1 In discussing the idea/expression dichotomy, the court found that "[c]ertain aspects of
the status screen . . . are unrelated to how the computer program operates and are [thus]
'expression."' Id. at 459.

19831

OHIO STATE LAW JOURNAL

On June 6, 1988, the Copyright Office announced that it would only
accept one copyright registration for a program, the registration of which
would cover "all copyrightable expression . . . embodied in a computer
program,... including computer screen displays."' The Copyright Office
reasoned that "there is no authorship in ideas, or the format, layout or
arrangement of text on the screen."' The Office, in the interest of
explaining the present scope of copyright protection," recommended that
in order to avoid infringement, developers of software should avoid
designing functions "in the same manner and with the same or a substantially
similar sequence of menus, prompts, messages, and other visual display
elements."99

Recognizing that the Office's decision taken in step with Sofildone leaves
no copyright protection for screen displays, the Copyright Office held a
public hearing to discuss the matter and concluded that the interests of clear
registration practice outweigh all other issues supporting Softiklone. In other
words, the Copyright Office decided to accept only one registration in spite
of the Softldone holding. This, in effect, leaves the Softidone holding in
doubt; the question being, would the court have denied nonliteral copyright
protection via program code if the court had known that there would have
been no copyright protection via a separate screen display copyright? No one
will ever know for sure.

With the actions of the Copyright Office in mind, two other courts
recently decided cases in favor of extending copyright protection to nonliteral
elements of a program embodied in the program's "look and feel." The first
of the cases, Manufacturers Technologies, Inc. v. Cams, Inc.,"° straddled
the line between the expansive Broderbund policy and the restrictive
Softlone policy1°' in holding that copyright protection only extends to
certain elements of a screen display. In doing so, Manufacturers continued
in the general trend of protecting some nonliteral program elements.

I Russo, Further Developments in Copyright Protection of the "Look and Feel" of
Computer Software: Recent Copyright Office Regulations, 7 SoFTWARE PRoTECrION 1, 3
(June 1988). Previously, the Copyright Office had accepted two registrations; one for code,
and one for screen displays. It is this dual registration that Sofiklone was decided upon.

917Id. at 5.
' The Copyright Office admits that "the registration practices of the Copyright Office

cannot precisely determine the scope of protection in any work." Id. at 11.

Id. at 2.
10o 706 F. Supp. 984 (D. Conn. 1989).

"I1 See generally Dorny & Friedland, Copyrighting "Look and Feel": Manufacturers

Technologies v. Cams, 3 HARV. J.L. & TECH. 195 (1990).

[Vol. 52:947

1983] COMPUTER COPYRIGHT

Manufacturers specifically held that the flow of the screen displays,"°

the external sequencing of screens,1" and the selection and arrangement of
certain screens were copyrightable. °4 Copyrightability was denied to the
format and placement of common components of screen pages, 105 the
internal method of navigation,"° alphabetical columns of information, 7

and certain specific screen displays." 8 The court did not define a bright-
line test as to what made any given element copyrightable or not, instead
proceeding by a seemingly ad hoe process. While the nature of this decision
does not lead to gleaning a general rule, it does dispel the opportunity of
over- or under-reading the case. Manufacturers stands for the proposition that
certain nonliteral screen display elements of a program are copyrightable, but
not all such elements are protectable.

In the most recent case prior to Lotus, Telemarketing Resources v.
Symantec Corp.,"° the District Court of the Northern District of California
accepted the concept that copyright protection could extend to the "look and
feel" of a program,"' but found no copyrightable elements in the case."'

102 Manufacturers, 706 F. Supp. at 994.

103 Id.

11 Id. at 996. Specifically, the screen found copyrightable included a menu of nine
terms-the "selection and arrangement of the terms." Id. at 997.

"I Id. at 995.
106

By internal method of navigation, the Court is referring to: 1) the use of the space bar
to move the cursor down a list of selection; 2) the use of the backspace key to move
up a list of selection; 3) the use of the return key to choose or implement a selection
or function; and 4) the use of number selection to change or edit an entry.

Id.
107 Id. at 996.
1' The court denied copyright protection to several screens for various reasons, including:

"The use of a columnar format and the use of both upper and lower case letters are not
sufficient on their own to warrant copyright protection because they lack originality." Id. at
998. Functional/utilitarian considerations also denied some protection. Id.

9 12 U.S.P.Q.2d 1991 (N.D. Cal. 1989).

110 In a questionable reading of Whelan, the court held that "[c]opyright protection applies
to the user interface, or overall structure and organization of a computer program, including
its audiovisual displays, or screen 'look and feel.'" Id. at 1993.

"'In a discussion that does not distinguish between whether the copyrightability is at issue
or whether protection is granted and substantial similarity is at issue, the court held that
certain menu options are fundamental to the purpose of the program, and thus not
copyrightable, and that, while certain menus themselves were similar, the elements of the
menus themselves were different, and thus not substantially similar. Id. at 1995-96.

OHIO STATE LAW JOURNAL

It seems that, with a few exceptions, the recent trend of cases has been
favorable to extending copyright protection to at least some nonliteral
elements of a program's "look and feel.""1 Yet the cases weave a
confusing pattern, relying on various wordings and viewing different
elements as copyrightable. In 1987, two "look and feel" copyright cases were
filed, both of which the legal commentators and the computer industry looked
towards to eventually clear up the confusion. The first of the cases, a suit
involving Apple, Microsoft, and Hewlett Packard, has been strung out and
has yet to be decided. As interest and curiosity mounted, the second of the
much-watched cases, the Lotus decision, was released.

IV. AN ANALYSIS OF THE LOTUS DECISION

Briefly stated, Judge Keeton in Lotus held that certain elements of Lotus
1-2-3's "user interface," specifically the structure of the menu command
system, were subject to copyright protection under a copyright registered to
the Lotus 1-2-3 program, and that, as a matter of law, Paperback Software
infringed upon Lotus' copyright by producing a spreadsheet with substantially
similar menu command systems.

Judge Keeton's decision can almost be regarded as a mini-treatise in its
length and breadth. While at times slipping, it is a generally sound and well-
written work. The crux of the decision revolves around the idea/expression
dichotomy, but elements of functionality, substantial similarity, and several
other issues are discussed and decided. Each of these areas will be discussed
independently.

A. The Application of the Idea/Expression Dichotomy to Lotus

The main issue in Lotus is exactly which elements of Lotus 1-2-3 are
copyrightable expressions of ideas, and which are ideas or noncopyrightable
expressions of ideas. Judge Keeton delivers a very tight, narrow conclusion
of what is protectable, and emphasizes the ad hoc nature of such decisions.'13

112 But note: No courts higher than district courts have ruled on the issue.

" First, a brief note on the phrase "look and feel." While Lotus has been generalized as

a "look and feel" copyright case, Judge Keeton himself shies away from the term. Judge
Keeton viewed the concept as wide-open and "[not] significantly helpful" Lotus, 740
F. Supp. 37, 62 (D. Mass. 1990). Keeton attempted an analogy between "look and feel" and
"total concept and feel," concluding that any such analogy would lead to confusion. Id. at 63.
Instead, Judge Keeton focused in on the "user interface" as a sub-set of "look and feel." Id.
One of the many benefits of Judge Keeton's decision is that he focused even further into
specific elements of the "user interface" in terms of copyrightability. Lotus does not stand for

[Vol. 52:947

COMPUTER COPYRIGHT

In determining what is idea and what is expression, Judge Keeton lists
four necessary elements for extension of copyrightability:

If... theaexpression of an idea has elements that go beyond all functional
elements of the idea itself, and beyond the obvious, and if there are
numerous other ways of expressing the noncopyrightable idea, then those
elements of expression, if original and substantial, are copyrightable.114

The requisite four elements are as follows: First, the expression must be
original;1 5 second, the expression must have elements separate from
functionality;1 6 third, an expression must not be obvious; 1 7 and fourth,
there must not be a limited number of ways of expressing the idea
(merger).

118

These are four difficult elements to determine, indeed. Judge Keeton
notes that the determination of copyrightability is not, in this instance, black
and white, but necessarily "a matter of degree." 9 He also notes that
complete disentanglement of an expression from its idea is not required in
order to extend protection."2

To aid in determining these elements, Judge Keeton adopts a three-
pronged "legal test":

FIRST, . . . [in separating idea from expression], the court may
conceive, along the scale from the most generalized conception to the most
particularized, and choose some formulation-some conception or definition
of the "idea"-for the purpose of distinguishing between the idea and its
expression.

SECOND, the decisionmaker must focus upon whether an alleged
expression of the idea is limited to elements essential to expression of that
idea (or is one of only a few ways of expressing the idea) or instead

any sweeping generalities upon the copyrightability of the "look and feel" of a program. See
supra notes 51-57 and accompanying text. Lotus stands for the copyrightability of certain
elements of a program's "user interface."

14 Lotus, 740 F. Supp. at 59.
115 That is, the expression must have originated from the author. Id. at 58. See supra notes

10-16 and accompanying text.
16 Lotus, 740 F. Supp. at 58. See infra notes 141-46 and accompanying text.
117 An obvious expression would be inseparable from its idea, and, if proteetable, would

occupy the field of the idea. Lotus, 740 F. Supp. at 58-59.

11 Id. at 59. See also, supra notes 10-30 and accompanying text.
"9 Lotus, 740 F. Supp. at 60.
120 Id.

1983]

OHIO STATE LAW JOURNAL

includes identifiable elements of expression not essential to every expression
of that idea.

THIRD, having identified elements of expression not essential to every
expression of the idea, the decisionmaker must focus on whether those
elements are a substantial part of the allegedly copyrightable "work."..

The first prong of the test, or the "sliding scale" test, is modeled after
a test devised by Judge Learned Hand;' idea is considered at one end of
the scale, and expression at the other. As one moves away from idea, a
concept becomes less and less of an idea and more and more of an
expression, or vice versa when moving away from expression.

While this is obviously not a bright-line test easily useable to determine
if an element is idea or expression, it seems to be an accurate test in terms
of software elements. Consider: At the highest point of abstraction,
everything in software today can be considered an idea,"z while at the
lowest point of abstraction (indeed, no abstraction at all), many elements of
software are expressions." If every part of "look and feel" or a "user
interface" were considered an idea, then there would be no protection for any
elements of nonliteral, noncode parts of programs. This would seem to go
against logic"z and the general trend of the case law.

Very few issues in copyright are black or white, and few works are
completely idea or completely expression. The sliding scale test allows a
judge to measure the "gray" of an element, to look at all surrounding factors
and determine if statute, judge-made law, or policy dictate a finding one way
or another. Such decisions, as Judge Hand stated over thirty years ago, are
"inevitably . . ad hoc. As soon as one accepts the fact that present-
day copyright law forces such decisions to be ad hoc, one is closer to

121 Id. at 60-61.

' See Nichols v. Universal Pictures Corp., 45 F.2d 119, 121 (2d Cir. 1930).
123 The idea of a spreadsheet, or a wordprocessor, or a disk operating system are examples.

124 What color to make the background, how big should the characters be, what order

should the commands go in? These are concepts that are generally not ruled by function, but
are instead open to the creative discretion of the programmer.

12 If every element were considered an idea (i.e., the simple ordering of commands within

a menu, assuming no functional constraints) then what word or concept would be used to
describe the initial action of deciding to group the commands together in a menu in the first
place? It seems much more logical, and much closer to the standard usage of the words, to
consider the grouping of commands into a menu to be the idea, and the ordering of the
commands to be a specific expression of the idea.

126 Lotus, 740 F. Supp. at 60, citing Peter Pan Fabrics, Inc. v. Martin Weiner Corp., 274

F.2d 487, 489 (2d Cir. 1960) (L. Hand, J.).

[Vol. 52:947

COMPUTER COPYRIGHT

understanding the narrowness of the Lotus decision. Any attempt to glean a
wide-sweeping rule would violate this ad hoe nature, and would make the
purported rule of doubtful value.

The disadvantage of the sliding scale is the lack of a bright-line test. As
Judge Keeton notes, there are disadvantages to applying a bright-line test to
a gray area such as this. 7 Any bright-line rule devised in this case may
lead to injustice if applied, for instance, to a case involving icons or a
database. The opposite side of the coin, of course, is that a bright-line test
would give the software industry a guideline to follow to avoid litigation.
Since a bright-line test seems a near practical impossibility, this choice does
not have to be made.

The second prong of the test deals generally with the concept of merger.
If there are only a few ways of expressing an idea, then the idea and
expression merge, and copyright expression is not extended.

The third prong of the test denies copyrightability if the element in
question is insignificant when compared to the work as a whole. In
determining whether or not an element is of "significant" stature, a court
must weigh qualitative and quantitative matters."

After stating the test, Keeton applies the test to Lotus 1-2-3 and VP
Planner, finding several elements that are not copyrightable and several that
are. Judge Keeton first holds that an electronic spreadsheet itself is an idea
that is not copyrightable.2 From this base, "[tihe issue [becomes] whether
Lotus 1-2-3 ...go[es] beyond those details essential to any expression of
the idea, and includes substantial elements of expression, distinctive and
original, which are thus copyrightable."'l

Several items are explicitly held not copyrightable: first, the general "L"
shape of the Lotus spreadsheet;' 3' second, the use of the backslash ("V)
key to invoke the menu command; 32 third, all arithmetic elements; 33

127 "Ifln many circumstances hard-and-fast rules, despite their initial attractiveness and false

promise of certainty, have consequences that offend one's sense of justice." Lotus, 740 F.
Supp. at 73.

'2 Id. at 61.
"2 "Defendants are quite correct... in asserting that the idea of developing an electronic

spreadsheet is not copyrightable. ... " Id. at 65. Judge Keeton cites other spreadsheets, such
as VisCalc, Multiplan, and Excel as other expressions of the spreadsheet idea. Id.

130 Id.
"3 A lack of alternative shapes makes the "L" fail the second prong of the test. Id. at 66.
132 The limited number of keys means that the expression here merges into the idea. Id.
3 These are viewed as essential to every mathematical expression. Id.

1983]

OHIO STATE LAW JOURNAL

fourth, the individual elements (commands) of the menus;1 and fifth, the
two-line moving cursor menu.135

One element, however, was explicitly held to be copyrightable: namely,
"the menu structure, taken as a whole-including the choice of command
terms, the structure and order of those terms, their presentation on the
screen, and the long prompts . "..."136 The menu is said to pass the first
prong of the test because the general concept of the menu is the idea, while
the "distinctive details of expression . . ," namely "the precise 'structure,
sequence, and organization' . . of the menu command system" 37 is
considered expression. The second prong of the test is passed because the
menu command system is "an aspect of 1-2-3 that is not present in every
expression of an electronic spreadsheet."13 The answer to the third prong
of the test is "incontrovertibl[y]" yes because "[t]he user interface of 1-2-3
is its most unique element, and is the aspect that has made 1-2-3 so
popular."

139

Judge Keeton follows this very specific discussion and holding with a
very confusing statement that, if correct, denies all of the preceding logic or,
if wrong, will only serve to confuse the interpretation of the case by
encouraging commentators to broaden the holding. Judge Keeton concludes:
"Taking account of all three elements of the legal test, I determine that
copyrightability of the user interface of 1-2-3 is established."" 4 Since this
sweeping statement would negate the specific holdings of noncopyrightability,
this Paper will interpret this statement as a careless overstatement,
undisruptive of the actual holding.

To summarize, Lotus holds that only one nonliteral, noncoded element
of the spreadsheet Lotus 1-2-3 is copyrightable, namely, the menu command
system. This is a very narrow holding. While Lotus holds that
copyrightability may extend to nonliteral elements of a "user interface," the
case itself extends the copyrightability to only one element of the "user
interface."

134 Some are either obvious or merge with idea. Id. at 67.
135 "The idea for a two-line moving cursor menu is also functional and obvious, and,

indeed, is used in a wide variety of computer programs including spreadsheet programs." Id.
at 65.

136 Id. at 68.
137 Id. at 67 (citations omitted).

138 Id. at 68.

139 Id.
140 Id.

[V/ol. 52:947

COMPUTER COPYRIGHT

B. Functionality: Perhaps a Dangerous Precedent

1. The Question of Functionality and Lotus 1-2-3

Also at issue in Lotus was whether or not functional aspects of Lotus 1-2-
3 precluded copyright protection. Paperback claimed that Lotus 1-2-3 was
itself an inherently useful article, and, even if not inherently so, that the
immense popularity of Lotus 1-2-3 made the program the industry standard
in terms of spreadsheets, making the program a useful article. Judge Keeton
ruled against both arguments.

In terms of Lotus 1-2-3 being inherently "useful," Judge Keeton
recognized this fact,14' but also noted that the concept of separability
allowed the copyrighting of separable, nonfunctional aspects of a work if
independent from functional ideas. 42 Keeton justified this view by noting
that the concept of functionality must not completely destroy protection of
expression.143 As previously discussed,"' this allowed Judge Keeton to
separate one specific part of Lotus 1-2-3, the menu structure, label it
nonutilitarian, and uphold its copyrightability.

In terms of the usefulness of Lotus 1-2-3 being proved by its immense
popularity and standardization, Judge Keeton invoked almost a quasi-equity
argument, claiming:

It does not follow that when an intellectual work achieves the feat of being
useful as well as expressive and original, the moment of creative triumph
is also a moment of devastating financial loss-because the triumph destroys
copyrightability of all expressive elements that would have been protected
if only they had not contributed so much to the public interest by helping to
make some article useful. 45

Keeton's equity argument, however, is at odds with other policy
arguments."46

141 "For example, Lotus 1-2-3 is surely 'useful."' Id. at 57.
SId. at 58.

143 c conclude that a court, in determining whether a particular element is copyrightable,
must not allow one statutory mandate-that functionality or usefulness is not itself a basis for
copyrightability-to absorb and destroy another statutory mandate-that elements of expression
are copyrightable." Id.

14 See supra notes 113-40 and accompanying text.
14' Lotus, 740 F. Supp. at 57.
" See infra notes 165-75 and accompanying text.

1983]

OHIO STATE LAW JOURNAL [Vol. 52:947

2. Functionality, Copyrightability, Macro Languages,
and the Structure of Menu Commands

In addition to the issue of the general useful nature of Lotus 1-2-3,
Paperback raised another independent claim of functionality-namely, that
since the structure, sequence, and organization of Lotus 1-2-3's menu
command system was an integral part of Lotus 1-2-3's macro language, that
such participation made the command structuring useful, or, alternatively,
that the command structuring was part of a programming language, which
itself should not be copyrightable.

In a short subsection of the Lotus decision descriptively entitled "Strained
Analogies and Word Games," Judge Keeton summarily dismissed the above
claims as "totally without merit."147 Judge Keeton's reasoning behind his
holding, combined with the confusion surrounding the discussion of this
issue, have made the precedential value of Lotus in the area of the
copyrightability of programming languages,14s as one commentator has
suggested, "particularly troublesome."149

Judge Keeton's explanation for dismissing Paperback's claim in this
instance flatly states that "the argument depends on arbitrary definitions of
words, adopted for undisclosed reasons." 1" While it is unclear whether
Judge Keeton's terse dismissal of the argument was based upon complete

'4 Lotus, 740 F. Supp. at 73.

'4 The issue of the copyrightability of a programming language has not been addressed by
the courts. A recent case, Ashton-Tate Corp. v. Fox Software, Inc., which placed the
copyrightability of a macro programming language directly at issue, was originally dismissed
via summary judgment on grounds of inequitable conduct. The case has recently been
rejuvenated by the rescinding of the previous order to dismiss; Ashton-Tate Corp. v. Fox
Software Inc., CV 88-6837 TJH (Tx) (C.D. Cal. Apr. 18, 1991) (LEXIS, Genfed library,
Dist. file), and a decision on the merits would shed a great deal of light on this issue.

While the copyrightability of a computer programming language is beyond the scope of
this Paper, a brief note is merited because of the impacts of the issue on the copyrightability
of "look and feel." Copyright protection of "look and feel" may be strengthened or weakened
depending upon the copyrightability of a macro language that uses part of the "look and feel"
as part of that language. Specifically, if programming languages are found to be
copyrightable, then any element of "look and feel" that is intertwined with a language (such
as a macro language) would have another leg to possibly support copyright protection. Or,
on the other hand, if languages are not copyrightable, then some "look and feel" elements that
are intertwined with languages (such as menu ordering) may have to survive an attack on
inseparable functionality.

149 Abramson, Why Lotus-Paperback Uses the Wrong Test and What the New Software
Protection Legislation Should Look Like, 7 CoMPuTER LAW. 6, 8 (Aug. 1990).

"' Lotus, 740 F. Supp. at 72.

1983] COMPUTER COPYRIGHT

disfavor of the argument,"' or a lack of understanding on the issue,152

two results of the dismissal are clear: first, Judge Keeton did not believe that
the use of menu commands in a macro language made the structure,
sequence, and organization of the commands functional, and second (a
double negative) Judge Keeton did not hold that programming languages
were uncopyrightable"

The implications of the first result mentioned above are somewhat
troublesome. Implicit in Judge Keeton's extension of copyright protection to
the menu structure is that the menu structure itself is either nonfunctional
(wholly expressive in nature) or has expressive, protectable elements
separable from functional elements. Yet both of these implications seem
contradicted by analysis elsewhere in Lotus. First, as Judge Keeton himself
stated, albeit in dicta, that "[b]ecause macros may contain many menu
choices, the exact hierarchy-or structure, sequence, and organization-of the
menu system is a fundamental part of the functionality of the macros.'" '
Second, the functional and/or useful nature of the menu command system
was considered an integral part of Lotus 1-2-3's macro language,155 as

1 Judge Keeton's tone makes this disfavor obvious. See id. at 71-72.
132 While basing his dismissal of Paperback's argument on purported bad usage of language,

Judge Keeton himself seems to create great linguistic confusion in attempting to explain his
understanding of Paperback's argument; specifically, Judge Keeton seems to confuse the
phrase "sets of statements or instructions" as the copyrightable work derived from a
noncopyrightable "language." In general, when referring to the syntax of a language,
particular words, symbols, or phrases that are part of the syntax of a language are called
instructions of that language. It is this syntax, of which the menu command structure is part,
that creates the questions and confusion surrounding Paperback's functionality argument.
Whether Judge Keeton understood this use of the phrase "instructions of that language" to
mean syntax (the correct understanding) or the actual code that is written using a language
(the incorrect understanding, but the one that fits Judge Keeton's reasoning), we will never
know.

5 See Lotus, 740 F. Supp. at 72. Keeton did not hold directly whether or not a
programming language was copyrightable, instead noting that Paperback had failed to show
any case or statutory law against language copyrightability, and concluding that the macro-
functionality argument had no bearing on his decision. Id.

'5 Id. at 65 (emphasis added).

155 A macro command is actually a collection of standard commands given to Lotus 1-2-3
by a user. Since a user may actuate certain Lotus functions by using cursor keys to highlight
certain functions listed in a menu, the actual order of the functions within the menu is
important in describing which function is to be actuated. For example: if a user wishes to
perform the third function (from the left) listed on a menu, the user will press the right arrow
key twice (highlighting the third function), then press the enter key to actuate the function (or
move to sub-menu). In order to create a macro program to actuate the same function, a user
stores three commands: two right arrow keystrokes, and the enter keystroke.

OHIO STATE LAW JOURNAL

Judge Keeton himself explained.156 Additionally, Paperback claimed that
the issue of compatibility with Lotus 1-2-3's macro language was the driving
factor in choosing to copy the Lotus 1-2-3 command structure. 57

Third, and finally, the separability of function from expression is
questioned by the nature of the development of the interaction between Lotus
1-2-3's macro language and menu command system. Consider: Which came
first, an aesthetically driven, nonfunctionally designed menu hierarchy
followed by the accompanying macro language, or a functional macro
language followed by the necessarily functional menu hierarchy designed to
interact with the macro language? Judge Keeton held that the expressive
nature of the menu structure was separable from the functional nature. To
hold this, one must assume that the menu hierarchy was created first, by
nonfunctional considerations ("File" feels better to the left of "Exit"), and
that the macro function in essence was created "next," using the
nonfunctional ordering of commands to create the macro language. Yet, at
this point the expression of the menu order seems indivisibly inseparable
from the language because one still depends on the other. If either changes,
the other does not function. At this point, has the menu structure crossed the
inseparable functional line? On the other hand, if the concept of the macro
language was developed before the hierarchy of the menu commands, then
there would seem to be a stronger argument for viewing the menu structure
as a functional element of the macro language. The ordering of the functions
would then not be based on expressive elements, but on functional constraints
of conforming to or building a programming language.

Regardless of the reasons for dismissal, the dismissal of Paperback's
argument denied an important question in determining which "look and feel"
elements can be afforded copyright protection. At an extreme, if Judge
Keeton had seen the menu command structure as functionally entwined with

156 See Lotus, 740 F. Supp. at 64-65.
157

[Miaking the changes required for macro compatibility meant that we had to
revise existing elements of the [VP Planner] spreadsheet interface, including the
hierarchical menu structure; [and] ensure that keystroke sequences would bring about
the same operational result in both programs

Several types of changes were required in the VP-Planner [sic] program to
achieve keystroke macro compatibility. First, the menu structure had to be altered
so that all menu commands would have the same first letter and be in the same
location in the menu hierarchy as in Lotus 1-2-3.

Id. at 69 (quoting Stephenson Affidavit 144, 146, Lotus Dev. Corp. v. Paperback Software
Int'l, 740 F. Supp. 37 (D. Mass. 1990)).

[V/ol. 52:947

COMPUTER COPYRIGHT

the macro language, he may have ruled the case completely differently. At
another, more dangerous extreme, Lotus may be read as encouraging the
copyrightability of a programming language; a conclusion that was not
directly stated in Judge Keeton's holding. At this point in the Lotus decision,
Judge Keeton had established and defended the extension of copyright
protection to one element of Lotus 1-2-3; next would come the test of
infringement-whether or not VP Planner was substantially similar to Lotus
1-2-3.

C. Substantial Similarity: The Test for Infringement

Once copyright protection is extended, an issue remains as to "whether
the alleged infringing work, measured by the 'substantial similarity' test, did
contain elements that infringed upon the copyrightable elements of the
copyrighted 'work."" 5 The issue thus became whether or not VP
Planner's menu command system was substantially similar to Lotus 1-2-3's
menu command system.

Judge Keeton first held that, since the copying was so "overwhelming
and pervasive; . . . the defendants . . . have admitted that they copied,"' 59

that as a matter of law any question of independent creation was precluded.
Judge Keeton then discussed the slight differences in detail between the
programs," ° concluding that even with such differences, the programs were
"substantially, indeed, strikingly, similar." 6'

In terms of the substantial similarity test, Judge Keeton listened to expert
testimony and attempted to place himself in a lay observer's position,
concluding that "[firom the perspective of both an expert and an ordinary

15 Id. at 61.

159 Id. at 68.
160 Judge Keeton lists the following:

Most VP-Planner [sic] menu lines begin with a help ("?") command, and some
additional commands are included at the end of some menu lines (i.e., "DBase,
Multidimensional" on the "/File Erase" menu line; and "Page #, No Page #,
Row/Col. #, Stop Row/Col. #, Background" on the "/Print Printer Options Other"
menu line). Other differences between the two programs appear in the start-up
screens, the placement on the screen of the menu lines, the exact wording of the
long prompts, the organization of the help screens, the increased width of the VP-
Planner [sic] screen, and the ability of the VP-Planner [sic] to hide certain columns.

Id. at 70.
161 Id.

19831

OHIO STATE LAW JOURNAL

viewer, the similarities overwhelm the differences."162 Judge Keeton also
concluded that "there is no genuine dispute of material fact," 1" and found
liability as a matter of law.

It is unclear exactly what amount of differences would have been
necessary to avoid a holding of substantial similarity. If the differences listed
by Keeton were indeed trivial, then one wonders what amount of differences
would be considered substantial. Judge Keeton made several observations to
the effect that the commands in the menus were obvious copies because the
commands were even in the same order for both menus. What if one were
to merely change the order of the commands within the menu? It is quite
possible that Lotus is narrow enough to suggest that the mere re-ordering of
commands within a menu is a noninfringing entirely different idea rather than
an infringing expression. How far, and to what extent, one "look and feel"
may be similar to another and not infringe is not clearly stated in Lotus. One
extreme, however, is clear: an exact copying of the order of commands
within a menu will be deemed substantially similar.16"

D. The Role of Policy in Lotus

Perhaps the greatest amount of discussion and debate leading up to Lotus
surrounded the policy issues inherent to software copyright protection.15

The majority of commentators, including a vast amount from the software
industry, feared that strong protection of "look and feel" would lead to

162 Id.

163 Id.

" Defendants in Lotus, however, had reason to copy the order of the commands, or so they

claimed. Paperback claimed that the order of the commands was a significant part of Lotus
1-2-3's macro language, and to ensure compatibility with Lotus macros, that the "only way
to accomplish this result. . . was to ensure that the arrangement and names of commands and
menus in VP-Planner [sic] conformed to that of Lotus 1-2-3." Id. at 69 (quoting Stevenson
Affidavit 117, Lotus, 740 F. Supp. at 69). Paperback further claimed that compatibility was
an economic requirement to survive in the spreadsheet market. Judge Keeton held against all
of these claims, stating first, that the success of incompatible Excel proved that success does
not depend upon compatibility; second, that compatibility could be achieved by other,
noninfringing ways, such as macro conversion programs; and finally, in terms of policy, "the
desire to achieve 'compatibility' or 'standardization' cannot override the rights of authors
to a limited monopoly in the expression embodied in their intellectual 'work.'" Id.

"6 The details of the policy arguments themselves are outside of the scope of this Paper.
This Paper is an attempt to discuss the legal issues, the reasons surrounding them, the exact
holding, and the impact of such holding. This is not, however, intended to diminish the
importance of the policy argument. As Judge Keeton himself noted, such arguments are
central and crucial in their place-namely, the legislature or higher courts. This Paper,
however, will continue to confine itself to the Lotus case itself.

[Vol. 52:947

COMPUTER COPYRIGHT

monopolies, increased costs, and decreased standardization, which would all
lead to decreasing the vitality of the software industry." On the other side,
a minority of commentators claimed that protection with teeth was required
to protect small developers, innovation in general, and investment in
research. 67

In his decision, however, Judge Keeton rejected the antiprotection policy
arguments that he claimed were inconsistent with congressional legislation in
the 1976 Copyright Act and CONTU. 168 While, previously in the decision,
Keeton noted that Congress had not directly spoken on the issue of "look and
feel" protection, Keeton also noted that CONTU had been aware of such
policy arguments, and that such arguers were in the minority." Keeton
stated that, at the district level, courts have limited functions, one of which
is to follow legislative policy when answering questions not directly governed
by statute. As such, any policy arguments against protection, and thus against
Keeton's reading of CONTU, were fundamentally flawed. 70

In terms of expert testimony on the policy arguments, Keeton allowed
(over objection) such arguments, but, for the reasons stated above, Keeton
declined to use the testimony in his decision.' Additionally, Keeton noted
that he would have no way of determining which group of experts were
correct, and that he was not in a position to make such a determination even
if he could.1"

16 See Computer Software and Copyright Protection: The "Structure, Sequence, and

Organization" and "Look and Feel" Questions, SoFrVARB PRoTECTIoN 7, 14-15 (July 1989);
Staff Paper, supra note 30, at 13; Menell, supra note 58, at 1068; Spector, Software,
Interface, and Implementation, 30 JuRmETcs J. 79, 87-88 (1989); Note, supra note 41, at
977; Bendekgey, supra note 57, at 1; Comment, supra note 2, at 978, 997-98, 1004, 1006;
Farrell, Standardization and Intellectual Property, 30 JURRMETRIcs J. 35-37, 49 (Fall 1989);
Clapes, Lynch, & Steinberg, supra note 65, at 1508; Curtis, supra note 38, at 59, 75-77;
LaST Frontier Conference Report on Copyright Protection of Computer Software, supra note
44, at 26-28; Samuelson & Glushko, Comparing the Views of Lawyers and User Interface
Designers on the Software Copyright "Look and Feel" Lawsuits, 30 JuRIMTRics J. 121, 137
(1989); Hemnes, Three Common Fallacies in the User Interface Copyright Debate, 7
ComPUTER LAW. 14, 15, 17 (Feb. 1990).

'1 See generally Note, supra note 41, at 976-77, 985; Farrell, supra note 166, at 48;
Spector, supra note 166, at 88; Curtis, supra note 38, at 76; Menell, supra note 58, at 1068,
1094, 1100; Schachter, supra note 47, at 59; Clapes, Lynch, & Steinberg, supra note 65, at
1509; Hemnes, supra note 166, at 16.

1 Lotus, 740 F. Supp. at 71.

169 Id. at 77.

170 Id. at 71.

171 Id. at 73-75.
172 Id.

1983]

OHIO STATE LAW JOURNAL

In sum, Keeton seems to be saying that changes based on such policy
arguments should be legislative, not judicial. Or, to an extreme, any such
judicial answers to policy questions would have to be made by higher courts
in the land. 3 Judging from Keeton's tone, it is unclear whether he would
have ruled in favor of the antiprotectionist policy arguments even if he had
held on the policy issue. Keeton cites pro-protectionist arguments quite
favorably,'74 and seems to hint that his decision is much like CONTU's;
since protection has been extended to areas about which the commentators
predicted doom, and since doom does not seem to have arrived, Keeton
disregarded all new predictions of gloom. 75

Judging from the reaction to Lotus, it does not appear that the "look and
feel" protectionist policy argument will go away any time soon. In fact, it
appears that this issue will be debated for some time, in both courts and
legislatures. In the remainder of this Paper, the debate will generally be
discussed in light of the Lotus decision. First, a brief survey of the software
industry will give a hint as to the empirical validity of the policy arguments,
and then the future of "look and feel" protection will be discussed, along
with a modest proposal.

V. THE IMPACT OF LoTus: INDUSTRY OPINION AND RESPONSE

The initial computer industry response to the Lotus decision was
negative."76 Critics instantly declared the decision as the harbinger of
destruction to the software industry,"7 signalling a chilling effect on the

173 Since the case has been settled, however, we will never know.

,, See Lotus, 740 F. Supp. at 75-77.
175 Id.
176 As one commentator suggested: "Right now, all we're doing is going backward,

unfortunately." Pane, supra note 46, at 46. This, however, is not a new position. Even before
the Lotus decision, copyright protection of software was not very popular with the software
industry. See Samuelson & Glushko, supra note 166, at 126 (citing survey response of
software legal and industry conference: "Seventy-seven percent of the respondents with an
opinion felt that 'look and feel' should not be given protection by either copyright or patent
law. Only 18 percent thought that copyright law should protect 'look and feel' or user
interfaces."); Seymour, The Case Against Look and Feel' Lawsuits, 4 PC WEEK 34 (Mar.
17, 1987) ("Let's not mince words here: Look-and-Feel lawsuits stink.").

177 See Abramson, supra note 149, at 9 ("Lotus - Paperback, if followed, will produce a
line of cases creating unwarranted monopolies."); Greguras, supra note 8, at 4, 5 ("This
decision will make it more difficult for developers to create new software products which are
competitive with successful programs.") ("Software developers ... can use it aggressively
against others as Lotus is doing.") This, again, is not a new fear, occurring years before the
Lotus holding. See Churbuck and Freedman, Suits Against 1-2-3 Imitators may have Wide

[Vol. 52:947

1983] COMPUTER COPYRIGHT

industry178 and a wave of new law suits. 179 This, however, so far has
proven to be untrue;1 the software industry, along with Lotus' direct

User Inpact, 4 PC WEEK 1, 2 (Jan. 20, 1987) ("Developers will be forced to create products
so different that people will be afraid to buy them because they are hard to learn." (quoting
Wayne Maples, Information-Center Consultant at the Federal Reserve Bank in Dallas)).

178 See Pane, supra note 46, at 51 ("Amid this debate, it seems clear that the ruling will,
if not chill, at least cool the industry."); Lewis, The Executive Computer; When Computing
Power is Generated by the Lawyers, N.Y. TIMEs, July 22, 1990, § 3, at 4, col. 1. ("'The
uneasiness of the industry shot up after Lotus sued Borland.... Lotus winning the Paperback
suit has had an enormous destabilizing effect on the industry. The whole thing is starting to
unravel and nobody knows what is going to happen.'" (quoting Mitchell Kapor, founder of
Lotus and now head Technology, Inc., of Cambridge, Mass.)); Darrow, Lawsuits Muzzle
Industry Spokesmen, INFOWORLD 46 (July 23, 1990) ("The ongoing flurry of copyright
infringement cases has already taken its toll on software developers ... [e]ven normally
outspoken executives are loath to comment on any cases without first consulting with
counsel.").

11 See Copyright Suits Could Slow Innovation, INFOWORLD 1, 2 (July 9, 1990) ("We're
going to see companion cases-progeny of the Lotus decision." (quoting John Yates, Partner
at Morris, Manning & Martin)).

180 While it is impossible to measure the chilling effect on an industry, and equally
impossible to point to software packages which did not get past the design phase due to
litigation fear, the U.S. software industry seems just as competitive and innovative as before
the Lotus decision, with a noticeable lack of monopolies in the spreadsheet sector. See notes
176-84 and accompanying text; Zachmann, Lotus-Paperback Precedent Need Not Harm the
Industry, 7 PC WEEK 10 (July 9, 1990) ("The present decision, however, gives no cause for
alarm The precedent it sets, as far as it goes, is a reasonable one that need not do the
industry harm.").

Thosewho foresee destruction have anotherproblem with the validity of their predictions;
namely, why hasn't doom already set in? The "industry doom" argument was proffered after
the Whelan case and when the Lotus suits were filed, yet doom has not been realized. See
Furger and Parker, Software on Trial; Are Look and Feel Lawsuits Putting a Stranglehold on
Innovation or are They Just a Sign That the Industry has Grown Up?, INFOWORLD 31, 36
(Jan. 9, 1989).

Each time a suit is filed, users, vendors, and analysts are quick to predict the doom
and gloom that will be cast over the industry. . . .In reality, these dire results
haven't come to pass [W]hen Lotus sued Paperback and Mosaic, critics cried
that all development of compatible products-including the add-ons-would come to
a screeching halt. But, in fact, the spreadsheet market shows few scars from the
suits.

Parker, Suits Have Had Surprisingly Little Effect on Software Industry, INFOWORLD 41 (Oct.
9, 1989) ("But for all the ink and breath spent on the look and feel suits, very little has
changed."); Parker, Copyright Law's Haziness Obstaclefor Developers, INFOWORLD 27 (July
13, 1987) ("But six months after the suits were filed, the impact seems less dramatic, with
most developers proceeding with business as usual.").

OHIO STATE LAW JOURNAL

competitors, appears to be doing fine,"' and the myriad of litigation has
not yet appeared. 1"

18 In general, software sales are up, see Coale & Picarille, Windows Fervor Spurs

Development in 1990; Mac Software Hurt by Delay of System 7.0, INFOWORLD 39 (Jan. 21,
1991) ("Software sales grew 50 percent in the first six months of 1990 "). Specifically,
software sales of competing spreadsheet Quattro Pro, by Borland International, a subject of
a subsequent Lotus lawsuit, continue to be strong. See Quinlan, Object-Oriented Products
Spur Borland's Revenue Surge, INFOWORLD 54 (Oct. 22, 1990) ("Sales also more than
doubled Even the company's ongoing legal problems with Lotus... haven't materially
affected the company's performance, as users are still willing to buy the Quattro Pro
spreadsheet. . . .") and Picarille, supra note 5 (garnishing 24 percent of the market). The
resolution of the Lotus-Borland suit may have an even greater impact upon the industry than
the Lotus-Paperback suit, for Quattro Pro is generally recognized as a technical improvement
over Lotus, allowing users to simulate the Lotus interface as an interface option, while
offering a unique interface of its own. See generally Lewis, supra note 178.

182 Initial fears of expansive litigation were fueled by Lotus itself, filing two suits the week

after the Lotus decision. (Filing against Borland International, Inc. for Quattro Pro and Santa
Cruz Operation Inc. for SCO Professional.) See generally Greguras, supra note 8. After these
suit filings, however, there has not been a marked increase in software litigation over the pre-
Lotus levels.

An informal computer-database survey of several computer and legal services has
revealed two software copyright suits having been filed in the first year after Lotus,
Weyerhaeuser Co. v. Osmose Wood Preserving Inc. (see Garner, DOS Developer Sues Over
App's Mac Look, Feel, 4 MACWEEK 97 (Sept. 11, 1990)) and Ieot Corp. v. American Airline,
Inc. (see Scheier, icot Sues American, Claims Airline Copied Reservation Software, 8 PC
WEEK 4 (May 13, 1991)). This may be compared to the six month period previous to the
Lotus decision, in which three suits were filed: Software Publishing Corp. v. Computer
Support Corp. (filed Apr. 13, 1990); see Pane, CSC Countersues SPC Over Clip Art; CSC
Claims Copyright Infringements by Harvard Graphics Programs, INFOWORLD 8 (June 18,
1990), Pane, SPC, CSC Settle Harvard Graphics Copyright Dispute, INFOWORLD 38 (Aug.
6, 1990); Intel v. AMD (filed week of Apr. 30, 1990); see Pane, Intel Sues AMD for
Allegedly Infringing Microcode Copyrights, INFOWORLD 6 (Apr. 30, 1990), Pane, AMD Wins
Right to Sell 80C287 Coprocessor, INFOWORLD 51 (Aug. 20, 1990); and Peter Norton
Computing Inc. v. Fifth Generation Systems Inc. (filed May, 1990); see Lyons, Battle of the
Backups Escalates as Fifth Generation Sues Norton, 7 PC WEEK 146 (May 14, 1990).

This in turn may be compared to the number of patent computer suits reported as filed
in 1990: two before Lotus and five after. See In Focus Sues CA, INFOWORLD 40 (May 14,
1990) (Focus Systems Inc. v. Computer Accessories, May 1990); Coale, Adobe Files Patent
Suit Against EFI, INFOWORLD 3 (June 4, 1990) (Adobe Systems Inc. v. Electronics for
Imaging, June 1990); TI Sues Five, INFOWORLD 39 (July 16, 1990) (Texas Instruments v.
Analog Devices Inc., July 1990); Coursey, TI Sues Dell Over Claimed Patent Infringements,
INFOWORLD 51 (Sept. 24, 1990) (Texas Instruments v. Dell Computer Corp., Sept. 1990);
Miller, New Laws Needed for Intellectual Property, INFOWORLD 29 (Dec. 24/31, 1990)
(Hayes Microcomputer Products Inc. v. Ven-Tel Inc., Dec. 1990); Pane, Cyrix, Intel Head
for Legal Tangle, INFOWORLD 3 (Dec. 24/31, 1990) (Cyrix v. Intel, Dec. 1990). Not all of
these suits were software related, but the amount of patent litigation in software is increasing

[Vol. 52:947

COMPUTER COPYRIGHT

Perhaps the main reason for these unfounded fears of industry desolation
are incorrect and over-broad readings of the Lotus decision itself.1 While
many commentators have correctly read the Lotus decision narrowly,18 the
general split in authority has lead to great confusion in the industry over
exactly what is protected and what is not. It would seem that the greatest
danger to the industry does not lie in the Lotus holding itself, but in the
uncertainty that surrounds the legal interpretation of the holding.

Through the confusion of the status quo, the message of Lotus should be
made clear: innovative change is still encouraged, while slavish cloning
(profiting from the creative expression of others) may be punished.
Functional expressions, like the phrase "file" or the backslash key, are not
protectable. Aesthetic expressions, like choosing the order of the commands
in a menu, are protectable. If a software firm wishes to chance cloning a
protected expression instead of creating one of their own, the cloning firm
must now factor possible litigation costs into their product equation.

Obviously, only time will tell the final effect of the Lotus decision on the
software industry. Other suits, still pending, will help to define the outer
reaches of protection and infringement. Software litigation is still very young
and uncharted; while Lotus may always be seen as a large island in the

also, perhaps showing a trend against attempted use of copyright protection and toward patent
protection. See generally Parker, Microsoft as Industry Bully May be an UnearnedReputation,
INFOWORLD 46 (Dec. 10, 1990).

While this survey is obviously limited in scope and only as accurate as the reporters
covering the issue, it is useful to view the overall trend of the year of 1990. There was no
major onslaught of litigation in the post-Lotus months. It is, of course, impossible to measure
if others are still planning litigation, or awaiting resolution of other pending software suits,
such as Lotus-Mosaic or Microsoft-Apple.

11 The confusion has generally been on the industry side. See Pane, supra note 46, at 44
("In his decision, Judge Keeton said that Lotus' user interface-which he defined as the menus
and keystrokes-are protected by copyright, and that VP-Planner [sic] infringed that
copyright."); Darrow, Lotus Litigation Sparks Corporate Resentment; Suit Viewed as a Way
to Gain Market Share, INFOWORLD 46, 46 (Sept. 3, 1990) ("[Clorporate customers express
worry that Lotus might attempt to extend its copyright to keystroke sequences, and thus to
customer-written macros.").

184 Several commentators seem to have hit the nail on the head, but they appear to be in the
minority. See Zachmann, supra note 180, at 10 ("[The ruling] is neither a triumph for 'look
and feel' nor a disaster for software innovation . . . this decision is on sufficiently narrow
grounds that it isn't likely to have a very dramatic impact on the industry The ruling.
. sets a clear precedent only in forbidding the direct copy of an existing product as a whole.

It goes no further in that respect than have other legal precedents."); Lotus Decision Extends
Copyright Law; Menu Structure and User Interface Are Protectable, Judge Rules, INFOWORLD
85, 85 (July 9, 1990) ("it boils down to the fact that the menu structure is copyrightable..
. .,11).

1983]

OHIO STATE LAW JOURNAL

swirling sea of rules and holdings, many rules and guidelines have yet to
been made.

VI. A PROPOSED METHOD FOR EVALUATING
THE COPYRIGHTABILITY OF "LOOK AND FEEL"

Generally speaking, there are three ways to proceed from the status quo
of software copyright protection: first, the status quo can be maintained,
progressing as in the past by judicial decisions; second, legislative change
can be enacted; and third, present copyright analysis can be molded to more
properly fit computer software cases. This Paper will address all three
options, concluding that the third option is most beneficial.

The first option is actually to do nothing; specifically, to apply present-
day copyright law to computer software applications, adding to the growing
body of cases that have interpreted the law and the legislative intents of
CONTU. Several commentators favcr this solution, claiming that "[m]any
in industry and in the legal profession take the position that existing
structures like copyright and/or patent are adequate to deal with software and
that sui generis approaches risk obsolescence" '

Some fear that courts will continue to "struggle, as they have in the past,
to protect authors' creativity while preserving competition in the
marketplace."186 Yet others fear "that even a correct application of
copyright law leads to anticompetitive results." 7 All commentators have
agreed that basic copyright law was not designed to accommodate computer
software protection. The past ten years of cases have shown an increasing
divergence in case holdings, with circuit courts of appeals disagreeing with
each other at one level and district courts disagreeing on others. Perhaps the
greatest difficulty with the status quo is the signal, or lack thereof, that is
being sent to the computer industry. The absence of a bright-line test leads
to a lack of predictability. Statements of antimonopoly power and holdings
of copyrightable user interfaces further confuse the software developer. When
such confusion reigns, the call usually sounds for legislation.

Perhaps the easiest method to plan, but the most difficult to implement,
would be legislative change directed at computer software protection. The
call for legislation has already gone out. 88 Many consider that any

185 Staff Paper, supra note 30, at 15.

186 Russo & Derwin, supra note 61, at 11.

187 Comment, supra note 2, at 1006.

's "If Lotus-Paperback is affirmed and/or followed... we do need legislation in this area.
Such a development would mean that ... copyright protection for software ... is

heading off in an untoward direction." Abramson, supra note 149, at 9.

[Vol. 52:947

COMPUTER COPYRIGHT

legislation would be better than the status quo.'89 Many commentators have
discussed varying types of legislation,"g from compulsory licensing (akin
to records) to ultra-thin or ultra-wide definitions of software "expression."
While legislative plans are easy to devise, history has shown that they are
difficult to agree on, difficult to apply in grey areas, and are inflexible to a
changing industry.

As to the first problem noted, just what would the agreement on
protection be? The industry and commentators seem evenly divided"'
between heavy and light protection, both sides with viable policy arguments.
Who would prevail? Secondly, how could any statute differentiate the "grey"
areas of law? With over 200 years of precedent, the greatest minds of
American legal history still haven't been able to define a bright-line test to
determine idea from expression. Would computer legislation be any easier
to devise? Finally, the rapidly changing nature of the software industry"
could possibly make any legislation outdated before it is passed into law
(much like CONTU). In sum, legislation may be more trouble than it is
worth.

The third option is a modification of the interpretation of present-day
copyright law. Granting that such modifications can never be a panacea, this
author submits that this option is the lesser of all evils.

Looking at the problem objectively, the key seems to be finding a
balance, within copyright law, between protecting an author's creative work,
providing an incentive to innovate, and protecting learning costs of users by
promoting standardization. Unfortunately, these are contradictory objectives
that are mutually exclusive. In order to avoid the violation of any one
objective, any proposed solution would most likely have to blend all three
objectives in order to achieve a compromise. Any such compromise must
also blend these specific "look and feel" objectives into the standard body of
copyright law without infringing upon the well-established objectives of
copyright.

This author proposes a modification to the test for infringement; namely,
an exception (or added factor) to the definition or determination of substantial
similarity. I propose that a purported infringing program be considered not

189 "[O]thers consider that modifications to existing structures, or development of sui

generis protection, are preferableto forcing software to fit models more suitable to other types
of works and discoveries." Staff Paper, supra note 30, at 15.

11 See generally Abramson, supra note 149.
9 See supra notes 176-85 and accompanying text.

'~' "Another problem in determining where software fits in the intellectual-property system
is that computer software and hardware technologies are changing rapidly, both qualitatively
and quantitatively." Staff Paper, supra note 30, at 13.

1983]

OHIO STATE LAW JOURNAL

substantially similar (and thus not infringing), if, in addition to present tests,
the second program offers a substantially significant benefit that the original
does not offer, and the use of the copyrighted expressions of the original
program are required. More simply stated, punish those who merely copy,
but do not punish those who copy the "look and feel" but add something
significantly improved to the program.

The idea of rewarding innovation while punishing slavish copying is not
new. Several commentators have suggested finding infringements only in
cases of close copying." Similarly, others are hesitant to find infringement
when innovation or effort are present."9

In fact, finding infringement only with minimal protection, i.e.,
protection against literal copying only, is not new at all to copyright, being
a well-established principle in some areas of copyright law. For example, in
the seminal case of Continental Causalty Co. v. Beardsley, 5 the Second
Circuit Court of Appeals held that insurance forms and instruments with only
small degrees of variation available are copyrightable, but infringed upon
only when literal copying has occurred."9 In Morrissey v. Procter &
Gamble,"' the First Circuit Court of Appeals applied minimal protection
to another factual setting, namely the instructions to a game. 9 A
modification of the substantial similarity doctrine would follow along these
lines.

Many commentators have noted that the present system of protection does
not really work for computer software."9 Others have noted that present-
day principles will eventually have to adapt to new technology.' The
question then becomes where copyright law should be modified, attempting

193 "Our conclusion is that copyright should be extended to protect against close copying
... ." Russo & Derwin, supra note 61, at 11. "[C]ourts should ... require fairly extensive
literal similarity before considering such claims." Yen, supra note 8, at 434.

194 "[C]ourts should be sensitive to these factors and should be more hesitant to find
infringement where the second corner's development efforts involve substantial investments
of time, money, and energy." Computer Software and Copyright Protection: The "Structure,
Sequence, and Organization" and "Look and Feel" Questions, supra note 43, at 10.
115 253 F.2d 702 (2d Cir. 1958).
'9' Id. at 706.
197 379 F.2d 675 (1st Cir. 1967).

198 Id. at 678.

199 "Software does not fit comfortably into the traditional intellectual-property frameworks
of copyright (which protects writings) or patent (which protects processes and machines)."
Staff Paper, supra note 30, at 13.

20 "mhe conferees are in agreement that courts will have to adapt traditional copyright
principles to a new and different technology." LaSTFrontier Conference Report on Copyright
Protection of Computer Software, supra note 44, at 17.

[Vol. 52:947

COMPUTER COPYRIGHT

to gain the most benefit with the smallest abrogation of existing law. The test
for infringement seems a perfect place to modify. Unlike the idea/expression
dichotomy and functionality, the determination of substantial similarity is not
defined in, nor restrained by, statute, and the area of law itself is presently
unsettled." The test for substantial similarity itself is generally considered
a grey area.2n

The proposed modification can be implemented as either an exception to
the substantially similar test' or as an added factor in the determination
of substantial similarity.' For discussion, the proposed modification can
be broken down into two general parts: substantially significant benefit and
required use.

The first part, the requirement that, to avoid infringement, a secondary
program must offer a substantially significant benefit that the original
program does not offer, is an attempt to encourage innovation by building on
another's shoulders while disallowing noninnovative cloning. Recognizing the
cost/benefit analysis that a user generally goes through in deciding what
software to purchase, 5 this requirement depends on a correct
determination of what a "substantially significant benefit" is.

201 "[I1t is not settled in software copyright law what procedure should be used for

determining when infringement has occurred in software cases and, more importantly, what
the test for infringement should be." Samuelson, supra note 44, at 68.

' "Somewhere between the one extreme of no similarity and the other of complete and
literal similarity lies the line marking off the boundaries of 'substantial similarity.'" Russo
& Derwin, supra note 61, at 5 (quoting 3 NIMMER ON COPYRIGHT, § 13.03[A]).

2I3 As an exception to the substantially similar test, the proposed modification would be
actuated after copyright protection has been established and substantial similarity has been
found using standard rules. Only at this time would the decision-maker determine if the
proposed modification exempted the purported-infringer from infringement.

I Unlike an exception, here the proposed modification would be actuated after copyright
has been established but during the determination of substantial similarity; the proposed
modification could be used as a factor of any weight (greater or lesser) in persuading the
decision-maker's determination of substantial similarity.

Io In general, a software purchaser is either making an initial purchase of software or
looking to upgrade a present system. If the software is an initial purchase in an application
area, the purchaser must recognize that there will be significant start-up and training costs for
whichever package is purchased. At this point all software packages start out equal.

With computers becoming more integrated into modern-day businesses (especially
spreadsheets like Lotus 1-2-3), a purchaser is more likely looking to upgrade software. At this
point the purchaser must be aware of training and start-up costs already spent on present-day
software that would have to be re-invested if purchasing a new package which would not
allow transferability of training. At this point, software switching costs become a disincentive
towards switching software packages. A competing software package would have to have
benefits that would outweigh all switchover costs in order to justify switching packages.

19831

OHIO STATE LAW JOURNAL

While not a bright-line test, the determination of a substantially
significant benefit must still have guidelines. A substantially significant
benefit must be an element of the software that, everything else being
equal,' would be considered a significant factor in a user's decision as to
which software package to purchase. In other words, if both packages were
sitting next to each other on a shelf, a user-purchaser would consider the
innovative difference of the secondary program as significant enough to merit
the purchase of the secondary program over the original.

This economic interpretation of substantially significant benefit has many
advantages. First, it protects a creative work from mere cloning, without
over-protecting the work by giving it a monopoly over competitors. The
creator would be able to benefit from the work (reaping the benefits of
creation) while being given an incentive to further his work through
innovation. There would be no disincentive to author innovation (as may be
the case of stagnation due to monopoly denying competition); rather, the
original author would be required to compete with other developers to
improve upon the initial work. 7 Second, innovation is encouraged without
the fear of loss due to a monopoly (i.e., loss due to a lack of
competition)." Since a competing developer could capitalize on an
author's work only by improving it, both competitors and the author would
be encouraged to innovate and improve the original work-a much better
proposition for society than mere cloning by competitors or monopolistic
redundancy from an over-protected author. Third, and finally, initial user
learning costs would be protected by standardization of the original "look and
feel." While such standardization will help users by decreasing training time,
the incentive to innovate should also keep a program's "look and feel" from
stagnating. Developers would be encouraged to add on to a user's basic
training without necessitating any retraining.

Several other boundaries of substantial significant benefit must be
discussed. First, since the substantially similar test is a test for infringement,

' That is, if there are no software switchover costs or other costs that would make one
package enter a cost/benefit comparison with a pre-determined cost.

207 This is not a new concept in the software industry. Many manufacturers, in an attempt

to keep customers from switching to competing packages, continually upgrade their original
software packages. Such upgrades are termed "new versions" and generally sold to old
customers at a significant discount. This allows the initial author to keep a competitive edge,
since others may be trying to copy an older version while the author is innovating a new
version.

208 The fear of litigation due to strong copyright protection over a certain expression of an
application that has become a standard may be significant to "chill" other developers and
innovators; to use the standard would invite litigation, and to develop a new standard would
be too costly in time and effort and too risky in terms of enticing software package switching.

[Vol. 52:947

1983] COMPUTER COPYRIGHT

not for copyrightability, a substantially similar benefit may be either
functional (not copyrightable itself) or nonfunctional (aesthetic and subject to
copyright). Second, a pure economic benefit (i.e., a lower price) on its own
would not be considered a substantially significant benefit.' Third, and
finally, secondary programs that are not direct competitors (such as programs
produced for noncompatible machines) would be treated as if they were
available as direct competitors for the purposes of a substantially significant
benefit.21°

The second half of the proposed modification is an attempt to pre-empt
abuse of the modification by necessitating that the copying of expressions is
"required." The interpretation of the term "required" is intended to be loose;
only a showing of direct application competition,1 or significant user
training required for the original, is needed for the term to be satisfied. The
purpose of this second half is to disallow a developer from placing a token
competing application in a program merely to justify the cloning of a "look
and feel." Such circumvention would deny society the benefits of innovation
from competition in the application arena.

While the proposed modification to the substantial similarity test may not
be a panacea, and may have built-in complications (such as the lack of a
bright-line test), it still may be the least evil of the three available courses of

2 The intent of this provision is to prevent a second developer from cloning the "look and

feel" of a program and being able to market the program for a lower cost (because the second
developer did not have to swallow any development costs). A mere cost savings is not, by
itself, a substantially significant benefit in light of the proposed modification.

210 For an example of the use of the proposed modification, consider the modification in the
light of Lotus v. Paperback. Since copyright protection was established and substantial
similarity found as a matter of law, the proposed modification could only act as an exception
to infringement. The test would be whether VP Planner offered a substantially significant
benefit over Lotus 1-2-3 which, minus pure software price considerations, would justify a
purchaser choosing VP Planner over Lotus 1-2-3. Since, as Judge Keeton notes, the
differences between the two spreadsheets are trivial, VP Planner would not evoke an
exception, and would be considered an infringer.

The results may be different, however, when Lotus is compared to a program such as
Borland's Quattro Pro. Under that prospective case, the decision-maker would have to
determine if Quattro Pro contained a substantially significant benefit over Lotus 1-2-3 to
justify purchase of Quattro Pro over Lotus 1-2-3. If empirical figures supporting Quattro Pro's
popularity are any indicator of a substantially significant benefit, Quattro Pro would be much
more likely to evoke an exception than VP Planner. See generally Picarille, supra note 5
("Borland is Lotus' most formidable opponent to date. . . .[Quattro Pro] accounted for 24
percent of the 2.1 million spreadsheet programs sold last year, while 1-2-3 held 58 percent
of the market).

211 That is, the application programs in contention must be of the same general type, such
as spreadsheets, wordprocessors, or, more generally, business programs.

OHIO STATE LAW JOURNAL

action. Even if the proposed modification itself gains no support, other
manipulations of present-day copyright law may still be more advantageous
than making no changes or drafting legislation. Regardless which course of
action is chosen for software copyright, perhaps the most important part of
any available course of action is to keep in mind both software and copyright
policy objectives and goals.

VII. CONCLUSION

In Lotus, Judge Robert Keeton held that one specific element of the user
interface of the spread sheet Lotus 1-2-3, the menu command structure, was
copyrightable and infringed by defendant Paperback Software. While being
hailed as a decision about the copyrightability of the "look and feel" of a
program, the Lotus holding is actually a very narrow decision that
incrementally follows the present prosoftware protection trend of the courts.
The decision itself has been greatly misunderstood, the misunderstanding of
which may have led to its immense unpopularity. Furthermore, the
destruction of the industry predicted by Lotus followers has arguably not
occurred.

The magnitude of the interest in the decision may eventually lead to
legislative change, but this Paper suggests instead that a slight modification
of the substantial similarity test, rewarding innovators and punishing slavish
copiers, may be more beneficial.

Brian Johnson

[Vol. 52:947

