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Abstract 

 Southern Mexico is the center of origin for maize (Zea mays ssp mays) and hosts an array 

of landraces (or traditional varieties). The diversity found within and among landraces is largely 

shaped by the interplay between selection and gene flow, resulting in populations that often 

evolve to be locally adapted to a particular environment. Mercer et al. (2008) discovered that 

landrace maize populations sourced from along an elevational gradient in the Mexican state of 

Chiapas exhibited a pattern of asymmetrical local adaption. We aimed to build upon this 

revelation by elucidating the role of temperature as a driving force of local adaptation in the early 

phases of the maize lifecycle. Using a thermogradient table, we exposed the seeds of nine 

landrace maize populations, three from the highlands, three from the midlands, and three from 

the lowlands, to temperatures the seeds would likely encounter during the planting season in 

Chiapas, and examined the rate of germination and percent germination. We also exposed the 

seeds of the nine landrace populations to periods of cold (approximately 10.0 ºC) lasting zero, 

seven, and 21 days, followed by exposure to favorable conditions (25.0 ºC), in order to test the 

effects of cold periods on seed germination and seedling morphology. Interestingly, elevational 

group was often not a significant predictor of fitness measures such as the percent germination 

and percentage of normal seedlings, indicating that patterns of local adaption in response to 

temperature may not be discernible in the early lifecycle at the temperatures we tested. One 

exception to this pattern occurred at the lowest temperature, 10.0 ºC, where the highland 

populations exhibited the highest percent germination and germination rate, followed by midland 

populations, and lowland populations, and a pattern of local adaption was clear. By contrast, in 

the rest of the temperature treatments, the midland populations generally performed best, 

although not always significantly. This suggests that the evolutionary advantages imparted by 
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local adaptation and enjoyed by highland populations in highland environment, described by 

Mercer et al. (2008), may not be present in the seed or seedling stage of the lifecycle in 

temperatures above 10.0 ºC. Thus, the ecological relevance of local adaption driven by 

temperature in the seed and seedling phase of the lifecycle may be limited to early planting 

situations in the cool, highland environment. 
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Introduction: 

 Crop genetic resources are the most crucial foundational element in our agricultural 

system. The development of breeding programs, which are dependent upon crop genetic 

resources, has allowed scientists to greatly improve global human well-being (Burke et al. 2009). 

Crop genetic resources promise to be a key tool in the quest to adapt our agriculture to the 

unprecedented challenge of a rapidly changing climate. Preserving crop genetic resources is 

vitally important because they are the most significant source of the novel alleles needed to 

contend with pests, equip plants with stress tolerance, and raise and stabilize yields (Burke et al., 

2009). Plant breeders frequently use traits from genetically diverse populations, such as 

landraces, and introgress them into elite lines by through a breeding technique known as 

backcrossing (Tanksley and McCouch, 2006). Consequently, the value of preserving these 

genetic resources was recognized nearly 90 years ago by Nikolai Vavilov and others (Brush, 

1997).  Their preservation is a major focus of organizations for agricultural advancement, such as 

the Consultive Group on International Agriculture Research (CGIAR), the UN Food and 

Agriculture Organization, as well as numerous NGO’s and governmental agencies (e.g., the 

USDA). 

Crop genetic resources are either conserved ex situ, in gene banks, or in situ, in the fields 

of the farmers as they grow the crop and maintain their seed stocks (Rice et al., 2006). Efforts to 

preserve crop genetic resources ex situ have achieved significant successes, including the 

incorporation of the International Board for Plant Genetic Resources (IBPGR) circa 1974 and the 

construction of a network of gene banks that preserve lines of the world’s most important crops 

(Altieri and Merrick, 1987). Ex situ preservation is fundamentally limited, however, by the 

nature of the process itself. Although great strides have been made in the collection of 
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accessions, due to the application of population genetics modeling and the shift in focus from 

preserving phenotypic diversity to preserving allelic diversity, the fact remains that accessions 

can never fully capture the genetic diversity present in the populations that the ex situ accessions 

are representing (Rice et al. 2006). Furthermore, the length of time between “grow outs”, or 

regeneration of the seed stock, can be many years depending on the storage method. If cold 

storage is used, the relatively long length of time in between grow outs creates a situation where 

the populations are extremely stable and have little opportunity to evolve (Roberts, 1975, found 

in Rice et al. 2006). Accessions are never static, however, and “genetic shift” can occur due to 

founder effects, random genetic drift, and selection in the new environment (Rice et al. 2006). 

Finally, the success of ex situ conservation efforts has been tempered by funding limitations and 

confusion arising from the overlapping jurisdictions of NGO’s, governments, and 

intergovernmental agencies (Altieri and Merrick, 1987). Thus, ex situ preservation of crop 

genetic resources is fundamentally limited and must be supplanted with in situ preservation.  

In situ preservation allows farmers to preserve large and more diverse gene pools. The 

populations being preserved are able to respond to evolutionary forces such as selection and gene 

flow. These forces may help increase, decrease, or maintain the fitness of the population in 

response to changing environmental factors (Mercer and Perales, 2010). In the case of pearl 

millet landraces in the Sahel, in situ conservation allowed landraces to evolve in response to 

changing climatic conditions, namely decreased rainfall patterns (Vigouroux, et al. 20011). 

Landrace varieties that were planted yearly and were able to evolve, were found to be more 

drought tolerant than landraces which were collected in the 1970’s, regenerated and planted 

(Vigouroux et al. 2011). This yield stability in the face of a changing environment was 

maintained through the processes of selection and evolution, and was a direct benefit to Sahelian 
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farmers. Therefore, in situ conservation serves the dual purpose of increasing genetic diversity 

and providing much need yield stability to some of the world’s most economically vulnerable 

famers. 

Nota bene, in situ preservation is not a panacea and is not advisable in systems where 

genetic diversity is being severely depleted or where populations risk extinction (Mercer and 

Perales, 2010). Crop varieties can be lost or abandoned due myriad environmental, social, or 

economic factors (Smale et al. 2003).  Consequently, many of the world’s preeminent crop 

genetic resource conservation scholars argue for the application of both in situ and ex situ 

conservation methods simultaneously, since they are complementary (Brush, 1991, Altieri and 

Merrick, 1987). Yet both methods of crop genetic resource preservation are limited by a paucity 

of information regarding the accessions and populations being preserved (Hoisington et al., 

1999, Tanksley and McCouch, 2006). The task of evaluating the millions of accessions for even 

the most basic agronomic traits must be undertaken, since it is the foundational step for further 

genetic work and ultimately, improved breeding programs with access to and understanding of 

the full range of genetic diversity in their arsenal. My work seeks to append this body of 

knowledge as it relates to landrace maize from Mexico by examining response of early lifecycle 

traits to temperature.   

Landrace varieties are a particularly rich source of genetic material, when compared with 

elite or creolized varieties (Van Heerwaarden et al. 2009, Eagles and Lothrop, 1994). A landrace 

can be defined as “a dynamic population of a cultivated plant that has historical origin, distinct 

identity, and lacks formal crop improvement, as well as being genetically diverse, locally 

adapted, and associated with traditional farming systems” (Camacho Villa et al. 2005). They are 

often found in crop centers of origin and are marked by “a high yield stability and intermediate 
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yield level under a low agricultural input system” (Zeven, 1998). Since they are able to withstand 

environmental stress, they are often used in areas with low access to agricultural inputs such as 

pesticides and fertilizers (Altieri and Merrick, 1987).   Numerous maize landraces can be found 

in Mexico (Wellhausen et al. 1952) and in Chiapas, “fifteen local varieties are recognized” 

(Bellon and Brush, 1994). The prevalence of many landraces is due to the heterogeneity the 

mountainous environment in which they are grown, as well as the varied uses farmers cultivate 

them for: “storage, tortilla or feed” (Bellon and Brush, 1994).  

Chiapas, Mexico is extremely mountainous; and the endemic landraces are locally 

adapted (Mercer et al. 2008). Patterns of local adaptation emerge in metapopulations that occupy 

a heterogeneous environment where divergent forces of natural selection act upon and produce 

locally adapted populations (Kawecki and Ebert, 2004). Local adaptation is an evolutionary 

phenomenon that occurs when local populations maintain higher fitness than foreign populations 

in their home environment (Kawecki and Ebert, 2004). Local adaptation in plants is studied 

using common garden or reciprocal planting studies in which populations originating from 

different environments or locations are brought together for comparison (Kawecki and Ebert, 

2004). Elevational gradients are often sites for local adaptation because they are home to extreme 

environmental differentiation, such as very distinctive temperature, UV light, or moisture 

regimes, within a spatial area small enough to host a metapopulation (Gimenec-Benavides et al. 

2007).  It is essential for the world’s biologists and agronomists to gain a better understanding of 

the process of local adaption in order to understand its effect on crop genetic diversity and its 

ability to yield valuable agronomic traits such as adaption to temperature or UV environments 

(Redden, 2013).  
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 Within crop landraces in Chiapas, an interesting and asymmetrical pattern of local 

adaption was found amongst 21 maize landrace populations sourced from an elevational gradient 

(Mercer et al. 2008). Highland landraces were four times more likely to produce good quality 

seed in the highland common garden than when they were grown in the midland common 

garden. Lowland landraces produced good quality seed in both the midland and highland 

common gardens, but produced 25% less seed mass than midland or highland races in the 

highland garden. The mass of good seed, multiplied by the likelihood of producing good seed per 

plant (defined as seed from ears with no more than 50% rotten seed) was used as a measure of 

fitness, called “adjusted fitness”. Using this metric, the highland landraces were more fit than 

other types in the highland common garden, and the lowland and midland landraces were more 

fit than the highland type in the midland common garden, a pattern indicative of local adaptation.  

However, the large degree by which highland types lagged behind midland and lowland types in 

seed production in the warmer, midland conditions versus the smaller degree by which midland 

and lowland populations lagged in fitness in the highland common garden made this pattern of 

local adaptation asymmetrical (Mercer et al. 2008). 

 While these overall patterns of local adaptation have been discerned, it is not clear which 

environmental factors were most important as selection pressures, and which traits were most 

significant contributors to the pattern of local adaptation observed.  Our research seeks to address 

this gap in the knowledge by examining the role of temperature in the earliest phase of the maize 

lifecycle. “Common garden” studies within a lab setting can be useful because they allow the 

researcher to isolate an environmental variable, such as contaminated soils, soil temperature, or 

the presence of a pathogen, and determine if it affects fitness, thereby indicating its possible role 

in natural selection (Kawecki and Ebert, 2004). In our work, we have isolated temperature as the 
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manipulated factor effecting seeds and seedlings in order to explore its effects on early life cycle 

traits in locally adapted maize landraces endemic to the Southern Mexican state of Chiapas. 

Temperature was identified as an environmental factor of interest due to its important role in the 

germination and seedling phase of the maize life cycle (Fenner and Thompson, 2005) and its 

prominence as a key driver of divergent evolution and local adaptation (Berry and Bjorkman, 

1980). 

The optimal temperature for maize germination is between 26 °C and 29 °C (Riley, 

1981). As temperature increases above this range, protein synthesis and the specific activities of 

enzymes are often hindered in the embryo, although there is significant genetic variation for this 

sensitivity (Riley, 1981). Furthermore, many studies on the effect of cold temperatures in maize 

have shown a strong, negative relationship between low temperatures and germination rate, 

emergence time, and germination uniformity (Miedema, 1982). The influence of seed genetics 

on germincation response to temperature can be seen clearly in Eagles and Hardacre (1979). 

They created full-sibling and S1 (male parent selfed) families using highland tropical maize 

populations. They found that populations with highland germplasm exhibited significant 

variation in percent germination, percent emergence, and time to emergence at 10 ° C, especially 

when compared with hybrids from temperate regions (Eagles and Hardacre, 1979). Full-sibling 

families germinated and emerged at the highest rate and in the shortest time period, followed 

closely by S1 families. The crosses between corn of US, Canadian, or French origin germinated 

and emerged at the lowest rates and emerged an average of seven days after the Full-sibling 

families (Eagles and Hardacre, 1979). The authors concluded that maternal affects played a 

larger role in determining germination and emergence time than paternal affects (Eagles and 

Hardacre, 1979). Eagles and Brooking (1981) also found that at 11 ° C, 15/5 ° C, and 15/10 ° C, 
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several populations of highland Mexican maize emerged significantly faster than the Corn Belt 

Dent cultivars.  

 The relationship between local adaptation, temperature and emergence was further 

explored in a study examining early lifecycle characteristics of highland tropical, lowland 

tropical, northern latitude flint, and Corn Belt dent maize hybrids at 16/6 °C, 25/20 °C, and 

35/30°C (Hardacre and Eagles, 1989). Highland hybrids exhibited “faster emergence, faster 

growth and leaf expansion rates, higher net assimilation rates, higher chlorophyll concentrations 

… and higher dry weight portioning” at the coolest temperature (6/16°C ) while Corn Belt Dent 

hybrids exhibited superior growth at the warmer temperatures (Hardacre and Eagles, 1989). No 

hybrid was able to maintain productivity at all temperatures, illustrating the limits of phenotypic 

plasticity (Hardacre and Eagles, 1989).  Thus, there is a substantial body of evidence supporting 

the assertion that response to temperature in the early maize lifecycle varies according to genetic 

differences and that locally adapted Mexican landraces are interesting candidates in which to 

study this aspect of genetic diversity. 

  Focusing on these early life cycle traits is essential in order to elucidate evolutionary 

processes, since the seedling stage is often the most sensitive stage in the plant lifecycle and 

maladaptation in this phase can create a demographic bottleneck in the population (Shimono and 

Kudo, 2003). Germination response to temperature is an especially important trait to 

characterize, since this the timing of germination is often temperature dependent and will effect 

the environment that the plant will experience for the remainder of the growing season (Shimono 

and Kudo, 2003). Previous work has been done to explore the role of temperature as a selective 

agent in the germination and seedling phase of the lifecycle. For Silene ciliata, a perennial alpine 

plant found in the Northern Mediterranean Basin, a reciprocal sowing experiment demonstrated 
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that populations had higher germination rates and seedling survival rates at the center of their 

elevational range than at the boundaries (Gimenez-Benavides et al. 2007). Since seedling 

survival is an essential component of lifetime fitness, it is an indication of local adaptation 

(Gimenez-Benavides et al. 2007).  Evidence of patterns of local adaptation in the seed and 

seedling phases of the lifecycle has also been found in wild barley (Hordeum spontaneum) as 

well as two Senecio subspecies in Sicily (Volis et al. 2002, Ross et al. 2012).  

The evidence marshaled clearly shows that the there is a lacuna in the literature in regards 

to the germination behavior and early lifecycle traits of maize landraces sourced from along an 

elevational gradient in response to temperature. Maize seeds and seedlings are prone to respond 

to temperature. Thus, patterns of local adaptation at theses phases in the lifecycle have been 

found in maize and other species. A great deal of work has been done to explore response to 

temperature in the early lifecycle in highland landraces from Mexico, but they have generally 

been compared with varieties from the US. Our work aims to determine how maize landraces 

from the highlands, midlands, and lowlands compare to one another. In this work, we hope to 

begin to elucidate the phases in the maize lifecycle that are most responsible for producing the 

pattern of local adaptation observed in Mercer et al. (2008), as well as the environmental 

influences that are most important in shaping this pattern. Furthermore, our work aids in the 

immense task of screening diverse germplasm from all over the globe for traits that could be 

utilized by maize farmers worldwide. Finally, this work illustrates the value of protecting crop 

genetic resources both in situ and ex situ for generations to come by describing the genetic 

variation within the populations for germination behavior and seedling morphological response 

to temperature.  
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Objectives and Hypotheses: 

We explored the early lifecycle characteristics of maize landraces sourced from an 

elevational gradient using temperatures that paralleled the temperature gradient present during 

the planting season in Chiapas, Mexico. We used nine landrace populations, three each from the 

lowlands, midlands, and highlands, which Mercer et al. (2008) demonstrated to be locally 

adapted. We designed the experiment to allow us to isolate temperature treatment, in order to 

better understand the role of temperature as a selective agent in the early maize lifecycle. 

Specifically, our objectives were to: 

1.) Determine how the temperatures that these landrace populations could experience during 

planting season along and elevational gradient effect the rate of germination and total 

germination percentages for the each of the nine landrace populations.  

2.) Examine the effect of cold (10 ° C) periods of zero, seven, or 21 days on germination and 

seedling morphology, using AOSA standards to assess seedling normality. (AOSA, 2009) 

 

I hypothesize that temperature will act as a directional selective agent on these 

populations and that it will affect populations differentially according to their home elevation. I 

predict that a pattern of local adaption will be observed, where the highland populations exhibit 

the highest levels of germination, the fastest rate of germination, and the fewest abnormal 

seedlings in the environment most similar to their home environment—the coldest temperatures. 

I predict that lowland populations will perform best in the warmest temperatures and midland 

populations will perform best at intermediate temperatures. If I observe this pattern, I will be 

able to conclude that there is evidence for local adaptation driven by temperature in the early 

phase of the maize lifecycle for these Mexican landrace maize populations. If this pattern is not 
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present, early lifecycle traits may be more plastic in their response to temperature, adaptation 

may be more important at later points in the lifecycle, or that temperature may not be a 

significant driver of local adaptation.   

 

Materials and Methods: 

Seed Material 

In 2009, nine landrace maize population were collected from rural farmers whose farms 

were located at three elevations in Chiapas. Three populations were from the lowlands (~600m 

above sea level), three were from the midlands (~1500masl), two were from the highlands 

(~2000 masl) and one compilation of three populations from the highlands was used due to low 

seed numbers in each of the three populations. During the summer of 2010, these landrace 

populations were regenerated in a common garden in the highlands at ~2060 masl in Teopisca, 

Mexico. The seeds were collected, dried on the ear, and hand-shelled. Seeds with obvious 

damage sustained in transit or due to granivory or disease were removed. In germination 

experiments, these seeds were blocked according to seed shape (i.e., round or flat) in order to 

standardize germination rates, since flat seeds germinate at a faster rate than round seeds 

(Moreno-Martinez et al. 1998). Prior to use in the experiments, all seeds were sterilized using a 

1% bleach solution agitated soak for 60 seconds followed by four, five-second rinses in distilled 

water. This was done in an effort to control ectophytic pathogens.   

 

Experiment 1: The Effect of a Thermogradient on Germination Behavior 

 In order to elucidate the differential effect of temperature on germination rate and total 

percent germination for nine maize landrace populations, we performed a germination 
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experiment using a thermogradient table. The seeds were sterilized and placed into 10cm 

diameter Petri dishes at a rate of ten per dish.  The seeds rested atop two blue blotters (Anchor 

Paper Company, St. Paul, MN) wetted with distilled water and were covered with one wetted 

blotter for the first three days of the experiment to provide moisture on both sides of the seed 

during imbibition. The Petri dishes were checked daily for 25 days for germinated and dead 

seeds, which were removed on the day that they were recorded. Germination was defined as the 

breaching of the testa by both the radicle (or multiple secondary roots) and the plumule (Bewley, 

1997). Distilled water was added to Petri dishes periodically to ensure that water availability was 

not a limiting factor for germination.   

The seeds from the nine landrace maize populations were exposed to one of six constant 

temperatures, 10.0 ºC, 14.5 ºC, 19.5 ºC, 23.0 ºC, 27.5 ºC, and 31. 5 ºC on a thermogradient table 

at the Seed Laboratory in Kottman Hall room 321 (see Table 1 for full description of 

temperatures used). The temperature range was designed to emulate the range of temperatures 

the seeds would likely encounter across the elevational transect from which they were collected, 

during the peak planting season (May to Mid-June) in Chiapas. Thus, the temperature range 

spanned from a temperature 1 ºC warmer than the lowest average air temperature the seeds 

would experience in a highland environment, to a temperature about 3 ºC cooler than the highest 

average temperature that the seeds would experience in a lowland environment. These averages 

were gleaned from Bioclim data containing the 30-year averages from 1971 to 2000 for 

representative locations in the highlands, the midlands, and the lowlands 

(http://worldclim.org/bioclim). 

A split block design was used with the temperature bands on the thermogradiant table as 

the main plots and maize populations as subplots randomized within each temperature.  The 
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experiment was performed with four blocks, three of which used flat seeds and one of which 

used round seeds (roughly reflecting the proportion of each seed shape found within the 

populations). Thus, we confounded seed type with positional blocks to account for nuisance 

variation due to both. Each block covered half of the table and the experiment was run twice to 

attain four blocks.  

We performed an analysis of variance using Proc GLM in SAS. First, we investigated the 

effects of block, temperature treatment, elevational group (Elv), and population within 

elevational group, as well as their interactions on cumulative germination at day four, seven, ten, 

and 25 (the final day of the experiment). We selected these days to provide us with “snapshots” 

of what might be occurring in the field at the very beginning stages of germination and 

emergence, the middle stages, and the final stages. Note that day 25 is almost certainly less 

ecologically relevant then days four, seven, and ten due to the disadvantages the seedlings would 

likely have encountered at this point in their life due to the increased likelihood that they would 

be outcompeted in the race to access precious resources.  

Block and block by temperature treatment were considered random factors while the 

latter was also used as the error term to test the main plot effect of temperature treatment. 

Population within elevational group was used to test elevational group, and temperature 

treatment by population within elevational group was used to test the temperature treatment by 

elevational group interaction.  Similarly, we clarified how germination curves (which elucidate 

rates of germination) differed across elevational groups exposed to the different temperatures and 

using Proc Lifetest in SAS, which performs a failure-time analysis (germination was equal to 

failure in our test).  We also performed the same analysis by temperature to more clearly assess 

how elevational groups differed in their germination curves at  each temperature. Finally, we 
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generated Wilcoxon and Log-Rank equality tests to elucidate significant differences between the 

curves at the beginning and end of the experiment, respectively.  

 

Experiment 2: The Effect of Cold Periods on Seed Germination and Seedling Morphology 

 We examined the effect of periods of cold (approximately 11.4 ˚C, with a range of 9.3 ˚C 

to 12.6 ˚C) prior to exposure to optimal conditions of 25 ºC on total percent germination, the rate 

of germination, and seedling normality for nine landrace maize populations.  We performed the 

experiment using standard and light weight rolled paper towels (Anchor Paper Co, St. Paul, MN) 

in a 25 ºC germinator and a 11.4 ºC cooler. 

 The three temperature treatments used included a zero day cold temperature treatment 

(i.e. immediate placement into the germinator set at 25 ºC), a seven day cold temperature 

treatment at 11.4 ºC followed by exposure to 25 ºC (i.e., a traditional AOSA cold test, AOSA, 

2002), and a 21 day cold temperature treatment at 11.4 ºC followed by exposure to 25 ºC. The 

first two treatments were represented in all four blocks and the third treatment was added to 

blocks three and four. As such, the zero day cold temperature treatment and the seven day cold 

temperature treatment were applied in a randomized complete block design with four blocks. 

Blocks three and four constituted a randomized complete block design for all three treatments 

(i.e., including the extended cold), albeit with less replication.  The representative highland 

population which was composed of three populations was not used in blocks three and four for 

the zero day cold temperature treatment due to low seed availability.  

 All blocks and all treatments were analyzed jointly. Flat seeds were used in all blocks 

and all seeds were sterilized with 1% bleach solution. For all of the experimental units exposed 

to the zero day cold treatment, and blocks one and two of the seven day cold temperature 
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treatment, the bleach solution and the towels the seeds were planted on to and covered with were 

at room temperature. For blocks three and four of the seven day cold temperature treatment and 

the 21 day cold temperature treatment, the bleach solution and the towels the seeds were planted 

on to and covered with were chilled to ~10 ºC to provide an imbibitional chilling shock.  

Ultimately, the block effect was not significant, however, so the imbititional chilling shock did 

not affect the seeds greatly.  

 Fifty seeds were planted per towel using a planting board in order to ensure uniform 

distribution. The seeds were covered with a lightweight towel for moisture and stability. The 

towels were then rolled, placed into a clear plastic bag with up to three other towels, covered 

with another clear plastic bag to prevent moisture loss, and placed upright into either a 

germinator set at 25 ºC, with 12 hour day/night cycles, or a 11.3 ºC cooler with no light. Each 

towel represented one replicate. Seeds in the towels exposed to the zero day cold temperature 

treatment were planted seven days after the seeds exposed to the seven day cold temperature 

treatment so that they simultaneously occupied the 25 ºC germinator. The seeds exposed to the 

21 day cold temperature treatment were planted at the same time as the seeds planted for the 

seven day cold treatment and were moved to the 25 ºC germinator after the other treatments were 

removed.   

After the first seven days of cold treatment, all seeds were checked daily for germination 

and normal seedling morphology. The seeds were judged to be normal based on AOSA rules 

(AOSA, 2009 and Andy Evans, RST, Personal Communication), which require that a seedling 

possess both a healthy shoot and root system. Seedlings that were called abnormal were small, 

extremely diseased, were missing either a shoot or roots, or had an extremely damaged shoot. 

Once a seedling was judged to be normal or abnormal, it was removed from the towel. Seeds or 
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seedlings that died were either visibly infected with pathogens or the seed gave way to slight 

pressure with tweezers due to internal infection. Dead seeds were removed once it became 

obvious that the seed would not germinate. Diseased seeds that had germinated and then died 

were marked as abnormal, due to their small size. Some seeds germinated normally despite 

disease.    

We performed analysis of variance tests using Proc GLM in SAS to elucidate the effect 

of block, temperature treatment, elevational group, population within elevational group, and their 

interactions on multiple categories of seed fitness. The categories of seed fitness we examined 

with this model included the total percentage of germinated seeds and the percentage of dead 

seeds. We also looked at the percentage of seeds that resulted in normal or abnormal seedlings, 

as well as the percentage of “unfit” seeds and seedlings (which consisted of abnormal seedlings 

plus dead seeds).  Two percentages were used for each category, one derived from the total 

number of seeds in a towel (which was generally 50 but had a range of ±2 seeds) and one derived 

from the average germination for each population under favorable conditions (the standard 

germination percentage). This latter method allowed us to use a measure standardized by 

“optimal germination”, thereby allowing us to examine effects of the cold treatments relative to 

the control. We graphed the least squared means and their standard errors to provide a visual 

representation of the analysis, explore general trends, and present the mean separations for 

significant factors and interactions. Finally, we used a Proc Lifetest within SAS which performed 

two failure-time tests using the germination data from days 0-25, with temperature treatment as 

strata. Finally, we generated Wilcoxon and Log-Rank equality tests to elucidate significant 

differences between the curves at the beginning and end of the experiment, respectively. 

 



20 
 

Results and Discussion: 

Experiment 1: The Effect of a Thermogradient on Germination Behavior 

 Examining germination curves (percent germination over time) is extremely instructive. 

At the surface level, it clearly allows us to visualize the effect of temperature treatment and 

elevational type on the rate of germination and the total percent germination. It also allows us to 

surmise potential competition dynamics in the field. Finally, it provides a small window into the 

process of germination itself and the three phases of germination: imbibition, activation of 

enzyme systems, and the protrusion of the radicle and the plumule (Bewley, 1997).  

The Effect of Temperature upon Germination Curves 

We used a Proc Lifetest failure-time analysis to investigate the percent germination for 

three elevational groups over time, at six temperatures. At the coldest temperature, 10.0 ºC, we 

observed a pattern indicative of local adaption. The Wilcoxon and Log-Rank equality tests were 

both significant, indicating that curves significantly differed among the elevational groups at 

both the beginning and end of the experiment (Table 2).   Although all three elevational types 

begin to germinate concurrently, circa day nine, the highlands germinated at the quickest rate and 

exhibited the highest level of total germination after 25 days, followed by the midlands, and the 

lowlands (Fig. 1A). This suggests that highland populations may have an advantage in the seed 

or early seedling phase of the lifecycle under extremely cold conditions.  The ability to germinate 

at a fast rate can be an evolutionary advantage because it allows a seedling to begin to access 

limited resources such as water and nutrients more quickly (Fenner and Thompson, 2005). 

Conversely, fast germination and emergence under cold conditions could be  maladaptive if the 

seedlings are prone to cold damage.  
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Sans perniciously cold conditions, however, earlier emergence would be a boon to a 

seedling, because it would decrease the seedlings likelihood of being blocked from light by 

nearby plants, especially weeds (Fenner and Thompson, 2005). Ceteris paribus, a faster 

germination rate is would lead to a correspondingly fast emergence rate, since germination is an 

irreversible process (Bewley, 1997). Eagles and Brookings (1981) found that maize populations 

sourced from the highlands did emerge faster than Cornbelt Dent populations under cold 

conditions ranging from 11-15 ˚C. Furthermore, Eagles and Hardacre (1989) found that 

populations with tropical highland germplasm emerged and grew faster (i.e. accumulated more 

dry weight and greater leaf area) when grown under 6/16 ˚C conditions than populations without 

highland germplasm. Our work corroborates their findings and fills a lacuna by demonstrating 

that highland populations also germinate more quickly under cold conditions than landrace maize 

sourced from other elevations. In conclusion, this body of evidence suggests that is most likely 

that seeds from the highland populations are adapted to contend with extremely cold conditions 

that would be damaging to other seedlings, since they germinate, emerge, and grow more quickly 

under cold conditions relative to populations from other elevations and latitudinal zones. This 

suggests that a pattern of local adaptation in response to temperature is discernible in the maize 

lifecycle under highland temperature conditions.  

With increasing temperature, however, the evidence of local adaptation driven by 

temperature in the germination phase of the lifecycle dissipated. This indicates that there may be 

a range within which germination response to temperature is relatively plastic and that, while 

10.0ºC is outside this, range, both 14.5 ºC and 19.5 ºC are within it. At these two temperatures, 

neither the Wilcoxon, nor the Log-Rank equality tests were significant (Table 2), therefore, 

elevational type did not significantly affect germination response to temperature. It is interesting 
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to note, however, that although the difference was not significant, the midlands populations had 

the highest level of germination and the fastest rate of germination (Fig. 1B,C). Midland 

populations also reached their final germination levels much earlier (on day 18) than lowland and 

midland populations (on day 25). In fact, at every temperature except 10 ºC, the midland 

populations were always the fastest to germinate (Fig. 1B-F).   

With a continued increase in temperature, elevational group again became a significant 

predictor of germination rates. At 23.0 ºC, 27.5 ºC, and 31.5 ºC, both the Wilcoxon and Log-

Rank Equality test were significant (Table 2). The significance of the Wilcoxon and Log-Rank 

equality tests appear to be largely driven by the differences between the lowland and the midland 

populations (Fig.1D-F). The lowland populations were the slowest to germinate at all 

temperatures. Perhaps at the cooler temperatures, the slowness of the lowland populations could 

be a protective strategy to minimize the risk of exposing sensitive seedlings to damaging cold 

temperatures above ground. At the warmer temperatures, however, it is certainly not indicative 

of a pattern of local adaption and suggests that the different elevational groups may have 

differing life strategies (i.e. levels of resources allocation to individual seeds), they may have 

aged differentially, or  it may be a result of seed vigor or seed quality differences. 

The Effect of Temperature on Germination Curves 

For each elevational group, it was extremely clear that the six different temperature 

treatments produced different germination curves. Wilcoxon and Log-Rank equality tests, which 

measure the effect of temperature on the germination curves, were significant for each of the 

elevational groups (Table 3). Their significance appears to be driven by the differences in 

germination rate observed at 10.0 ºC, 14.5 ºC, and 19.5 ºC (Fig. 2A-C). For all of the elevational 
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types, the germination curves for 23.0 ºC, 27.5 ºC, and 31.5 ºC did not appear to differ 

substantially from one another (Fig. 2A-C). The lower temperatures induced more noticeable and 

possibly adaptive responses to temperature.  

The fact that temperature influenced germination rate is not surprising, given the 

voluminous literature on the subject (Riley, 1981, Miedema, 1982, Fenner and Thompson, 2005). 

What is interesting, however, is that this pattern suggests that there may be a distinct biological 

threshold, in between 19.5 ºC and 23.0 ºC, where temperature begins to affect the seeds in a 

more substantial way. This is likely due to a slowdown in the reaction rate for at least one 

enzyme that is important in the germination process. Furthermore, our previous analysis 

indicates that this slowdown in enzymatic activity does not affect the elevational types in a 

significantly different way at 14.5 ºC and 19.5 ºC (Fig. 1 B,C), suggesting that the enzymes 

involved may be fairly equally represented in all elevational types. At 10.0 ºC, however, it could 

be that the three elevational types produced different enzymes or different levels of enzymes 

according to their type, since we observed significant differences in the germination rate at this 

temperature (Fig.1 A). Although their results were not statistically significant, Turner et al. 

(1994) documented a pattern of local adaptation in the thermotolerance of the enzyme 

glutathione reductase, an antioxidant. Glutathione reductase functioned best at t lower 

temperatures in highland maize cultivars and functioned best at higher temperatures in lowland 

maize cultivars.  Our study is hardly conclusive on this matter however, as the differential 

germination rates observed at 10.0 ºC could be the result of a multitude of factors (e.g. the level 

of water uptake that the seeds are capable of at a given temperature), but it is promising.  

A fascinating avenue for further research would lie in continuing to expose the seeds to 

even more extreme temperatures and observing their germination behavior. Although this 
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approach would surely lose all semblance of ecological relevance, it would be a very interesting 

way to screen for phenological traits involved in thermotolerance and adaption. In the context of 

the more realistic scenario of global climate change, which is expected to warm Chiapas by 

approximately 3 °C in the next 40 years (Christenson et al. 2007), it appears that the germination 

rate and level for all the elevational types will increase slightly or largely be unchanged. Our 

study cannot comment on multitude of other effects of climate change (e.g. changes in the 

precipitation regime) or on the effect of climate change at other phases in the maize lifecycle.  It 

is good to know however, that increases in temperature alone are unlikely to substantively affect 

the populations adversely during the germination phase, ceteris paribus. Our results indicate, 

however, that the pattern of local adaptation observed in the germination phase of the lifecycle 

may become obsolete with an increase in temperature of only a few degrees. Therefore, it is 

possible that highland populations may risk abandonment by smallholder farmers in Chiapas if 

their evolutionary and yield advantages (their cold tolerance) are rendered useless. 

ANOVA Analysis of Factors Effecting Germination Curves at Days Four, Seven, Ten and 25 

Using Proc GLM in SAS, we analyzed the effects of block, temperature treatment, block 

by temperature treatment, elevational group (Elv), and population within elevational group, as 

well as their interactions, on the cumulative germination observed on days four, seven, ten, and 

25 (the final day of observation). For each of the time periods examined, an ANOVA analysis 

indicated that temperature treatment was significant (Table 4). Tukey-Kramer comparisons of the 

effect of temperature, showed an interesting pattern. On day four, germination levels at , 10.0 ºC 

and 14.5 ºC grouped together, 19.5 ºC was solitary, 23.0 ºC and 27.5 ºC grouped together, as well 

as 27.5 ºC and 31.5 ºC (Fig. 3A). On day seven, 23.0 ºC,  27.5 ºC, and 31.5 ºC grouped together, 

followed by 19.5 ºC and 23 ºC, while 14.5 ºC  and 10.0 ºC were significantly different from all 
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other temperatures (Fig. 3B). On day ten, 19.5 ºC, 23 ºC,  27.5 ºC, and 31.5 ºC grouped together, 

while 14.5 ºC and 10.0 ºC remained solitary (Fig. 3C). Finally, on day 25, 14.5 ºC through 31.5 

ºC grouped together, while 10.0 ºC  was again, solitary (Fig. 3D). Thus, over time the range of 

temperature in which no significant difference in cumulative germination level could be 

observed expanded. Even at day 25, however, that temperature range still did not include 10.0ºC. 

These results are indicative of plasticity of germination in response to temperature, which 

increased over time but was never present at 10.0 ºC. Of course, this pattern, whereby seeds 

exposed to 14.5 ºC and 31.5 ºC have similar rates of survival after 25 days, would likely not be 

observed in the field, given the advantages which seeds that have germinated earlier can accrue.  

On days four and seven, population within elevational group was significant according to 

the ANOVA analysis (Table 4). A Tukey-Kramer comparison illustrated that this was likely 

largely due to one lowland population performing quite well, while the two others had the lowest 

germination of all populations (Fig. 5A). The midland and highland populations largely grouped 

as separate elevational groups, with midlands exhibiting the highest average germination on this 

day. On day seven, variation among populations from all elevational groups seemed to cause the 

significant population within elevational group effect (Fig. 5B). After day seven, variation within 

elevational group according to population was not significant (Table 4).  

 On days ten and 25, the ANOVA analysis showed that elevational group and the 

elevational group by temperature treatment interaction were both significant (Table 4). On day 

ten, the midland populations had the greatest number of seeds germinated, followed by the 

highland and lowland populations (Fig. 6A).  A Tukey-Kramer analysis indicated that midland 

mean germination was significantly greater than that of the highlands and lowlands, but the 

highlands and lowlands did not differ. On day 25, the same ranking held, however the highlands 
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were not significantly different from the midlands, but both were significantly different from the 

lowlands (Fig. 6 B). In regards to the temperature treatment by elevational group interaction on 

days ten and 25, it appears to be driven largely by the behavior of all of the elevational groups 

under 10.0 ºC conditions (Fig. 6 A,B). As temperature increased beyond 10.0 ºC, the differences 

in cumulative germination between the three elevational types decreased (Fig. 6 A,B).  

Experiment 2: The Effect of Cold Periods on Seed Germination and Seedling Morphology 

Prior to the protrusion of the radicle and the plumule, the seeds were going through the 

previous two phases of germination: imbibition and activation of enzyme systems (Bewley, 

1997). Evidence of this imbibition period, can be seen clearly when examining the effect of the 

zero day cold temperature treatment, the seven day cold temperature treatment, and 21 day cold 

temperature treatment on germination using Proc Lifetest (Fig. 7). Seeds exposed to zero days of 

cold treatment (i.e. immediately placed in the 25 °C germinator) required a period of at least two 

to three days during which imbibition and activation of the enzymes occurred before visible 

germination. In contrast, seeds already exposed to seven or 21 days of the cold treatment, had 

obviously already undergone these processes, as evidenced by their substantially faster rate of 

germination upon placement in the 25 °C germinator (Fig. 7). Some seeds exposed to these two 

cold treatments had even germinated in the 11.4 °C conditions, albeit at a slower rate. Since 

these seeds were two year old crop seeds, it’s not likely that they had a significant level of 

dormancy (Gepts, 2004). Therefore, the germination rate observed was likely controlled almost 

exclusively by the different temperature treatments, rather than dormancy breaking mechanisms. 

A test of the equality of the curves by treatment using the Wilcoxon and Log-Rank statistics 

showed that the curves were significantly different in the early stages of the experiment as well 

as the later (Table 5). 
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Percent Germination: 

A SAS GLM analysis indicated that temperature treatment, population within elevational group, 

and temperature treatment by elevational group had significant effects (P≤0.05) on percent 

germination (Table 6). Elevational group was nearly significant (P≤0.1009) (Table 6). According 

to a Tukey-Kramer comparison, the seeds experiencing the zero day cold temperature treatment 

exhibited a significantly higher percent germination, than the seeds experiencing the seven day 

cold temperature treatment and the 21 day cold temperature treatment. The seven cold 

temperature treatment and the 21 day cold temperature treatment did not differ significantly from 

each other (Fig. 8). Although not statistically significant, it is interesting to examine the 

interactions between temperature treatment and elevational group. Across each of the 

temperature treatments, midland populations exhibited the highest levels of germination, 

followed by lowland and highland populations (Fig. 9). The percent germination levels of 

lowland and highland groups decreased with periods of cold temperature, with the seeds exposed 

to the 21 day extended cold period exhibiting the lowest levels of percent germination (Fig. 9). In 

contrast, the percent germination of the midland populations did not appear to decrease 

substantially with exposure to cold (Fig. 9).  

Percent Dead: 

We defined percent dead, as the percentage of a seeds which died and did not germinate. 

Temperature treatment, population within elevational group, and the temperature treatment by 

elevational group interaction were all significant (P≤0.05) (Table 6). Increased exposure to cold 

significantly increased seed mortality (Fig. 10), however, there was also a significant treatment 
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by elevational group interaction. Midland populations were significantly less likely to die before 

germination across all treatments (Fig. 11).  

Percent Normal: 

We defined the percent normal as the number of normal seedlings divided by the total number of 

seeds planted per population. Both temperature treatment and population within elevational 

group had significant effects on the percent normal (P≤0.001) (Table 6). A Tukey-Kramer 

comparison indicated that while the zero day cold temperature treatment was conducive to the 

highest levels of normal seedlings within the populations, it did not differ significantly from the 

seven day cold temperature treatment. The 21 day cold temperature treatment, however, caused 

to a significant drop in the level of normal seedlings within the populations (Fig. 12). Thus, we 

can conclude that while cold period of seven days did not affect seedling normality, there is a 

point in between seven and 21 days in the cold where levels of seedling normality begin to 

decline significantly. The significance of population within elevational group seemed to be 

driven by variability between populations in all elevational groups (Fig.13). Although the 

differences were not statistically significant, midland populations performed at higher levels than 

both the highland and lowland populations across temperature treatments (Fig.14).   

The percent normal gives us an indication of the effects of the three temperature 

treatments on the likely fitness levels of the populations during their seedling phase. The 

measure is a good addendum to percent germination, since it allows us to peer into the 

immediate next phase of the lifecycle and elucidate how many seeds would likely survive 

beyond the V1-2 leaf phase. Our results indicate that cold temperatures for seven days or less 

would not likely adversely affect the fitness of germinating seeds in the field. Since the 
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elevational group effect was insignificant (Table 6), our results suggest that the elevational 

groups would be equally likely to survive to the next phase of the lifecycle if in the field under 

the temperature conditions tested (Fig. 14). 

Standardized Percent Normal: 

By examining the total percent normal for each population divided by the percent 

germination observed in 25 °C conditions (i.e. the population’s standard germination, AOSA, 

1981), we can see the effect of treatment more clearly. For example, if a population had 80% 

germination in the standard germination test and 79% germination under cold conditions, the 

decrease in germination would be much less than if the population had 100% germination in the 

standard germination test and 79% germination under cold conditions. Nota bene, in making 

predictions concerning the likelihood of seedling survival to the next phase of life in the field, 

the percent normal is a more instructive metric than the standardized percent normal.  

Overall, since germination was fairly high for most populations (Fig. 9, at the zero day 

cold temperature treatment), the differences between the total percent normal and the 

standardized percent normal were small. It is interesting to note that only temperature treatment 

was still significant (P≤0.001), while population within elevational groups was only nearly 

significant using this metric (P≤0.0631) (Table 6). In contrast with the percent normal analysis, 

in which elevational group was not significant, elevational group was nearly significant in the 

analysis of the standardized percent normal metric (P≤0.0874) (Table 6). This suggests that the 

variation in percent normal due to elevation was increased by standardizing the data. Clearly, 

temperature treatment was the largest source of variation for the percent normal and the 

standardized percent normal in our seedling morphology experiment.  
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The interaction between temperature treatment and elevational group was not significant, 

nevertheless, we observed interesting trends. Namely, midland populations trended towards 

slightly outperforming both lowland and highland populations when exposed to the seven day 

cold temperature treatment and especially when exposed to the 21 day cold temperature 

treatment (Fig. 15).  We would have expected that the longer the cold waiting period, the better 

highland populations would perform in comparison with the other populations, since highland 

populations are most likely to encounter cold periods in situ. This did not happen, however, and 

it was the midland populations that were least affected by the cold.  The lowland populations do 

exhibit some elements of a pattern of local adaption, since clearly normality decreased with 

increasing time in the cold and they were most fit sans cold treatment. Although they were 

slightly more fit than midland populations under the warm treatment, they were not significantly 

so and thus, we cannot say that they show a complete pattern of local adaption in this phase of 

the lifecycle.  

Percent Abnormal:  

Examining the level of seedling abnormality is useful because it denotes the proportion of 

seeds which were able to germinate but would still be incapable of reaching the next stage of life. 

It is therefore indicative of seedling response to environment. In contrast, examination of the 

dead seeds only allows us to look at the ungerminated seeds response to the environment. Thus, 

we can subdivide our understanding of each population’s response to environment into two 

categories: seed (dead or germinated) and seedling (normal or abnormal).  

Temperature treatment was the only significant source of variation for percent 

abnormality (P≤0.001), suggesting that populations from all elevations tend to be equally 
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abnormal across conditions. A Tukey-Kramer analysis indicates that seedlings experiencing the 

seven day cold temperature treatment produced the lowest percent abnormality, followed by 

those in the zero day temperature treatment, and finally, those in the 21 day cold temperature 

treatment (Fig. 16). All treatments were significantly different from one another. This illustrates 

that the seven day cold temperature treatment may be beneficial for the seedlings in some way, 

because it decreased levels of abnormality. This pattern can also be seen clearly when examining 

the interaction of treatments and elevational group, which was not significant (Figure 17). The 

pattern is especially evident in the midland populations, but is also present among the highland 

populations. For lowland populations, the seven day cold temperature treatment did not greatly 

affect levels of abnormality, but the 21 day cold temperature treatment produced a large increase 

in the percent abnormality. The pattern we observed, whereby the percentage of abnormal 

seedlings decreased after the seven day cold temperature treatment, may be the result of lower 

disease levels after this treatment. Conversely, since the percent abnormal also included those 

seedlings that germinated and then died, this result could be caused by the fact that seeds that 

might have germinated and been called abnormal when exposed to the zero degree temperature 

treatment, were unable to germinate when exposed to the seven day temperature treatment. Since 

the percentage of dead seeds increased with exposure to cold temperature, this seems likely (Fig. 

10). 

Standardized Percent Abnormal: 

Using this metric, again, only the temperature treatment is significant (P≤0.001) but population 

within altitude is nearly significant (P≤0.0633) (Table 6). This metric suggests that there may be 

some populations which are more likely to produce abnormal seedlings.  
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Percent Unfit 

When analyzing the results from an evolutionary perspective, the two most interesting 

results are the percent normal, which could also be called the percent “fit”, and the percentage of 

“unfit” seeds and seedlings. We defined the percent unfit as the percentage of abnormal 

seedlings plus the percentage of dead seeds. It gives an indication of what percentage of the 

population is unlikely to survive past the seedling stage under the conditions imposed. For the 

percent unfit, both temperature treatment and population within elevational group were 

significant (P≤0.001) (Table 6). The 21 day cold temperature treatment produced the highest 

levels of unfit seeds and seedlings, followed by the seven day cold temperature treatment, and 

the zero day cold temperature treatment, which were not significantly different from one another 

but were both significantly less than the 21 day cold temperature treatment, as shown by a 

Tukey-Kramer comparison (Fig. 18).  

The fact that the 21 day cold temperature treatment produced more “unfit” seeds and 

seedlings mirrors the low germination levels observed at 10.0 ºC in the thermogradient 

experiment (Fig. 1A). The fact that the seven day cold temperature treatment and zero day cold 

treatment were not significantly different from one another may indicate better tolerance of cold 

in landrace populations than US cultivars (Hardacre and Eagles, 1989). For population with 

elevational group, lowland populations were the most variable while midland and highland 

populations largely grouped together. In general, midlands populations were the most fit and 

highlands were the least fit (Fig. 19). Although the temperature treatment by elevational group 

interaction was not significant, midland populations showed fewer declines in fitness, while the 

fitness of highland and lowland populations declined more substantially with increasing time 

spent in the cold temperature (Fig 20). 



33 
 

Conclusions: 

In conclusion, a clear pattern can be seen throughout the analysis, whereby midland 

populations were most fit across temperature treatments. The exception, of course, was the 

percent germination levels and rates of germination observed at 10.0 ºC in the thermogradient 

experiment, which did follow a pattern of local adaptation. Nevertheless, the preponderance of 

our work suggests that the evolutionary advantage in thermotolerance enjoyed by highland 

populations in highland environment, described by Mercer et al. (2008), may only be present in 

the seed or seedling stage of the lifecycle at temperatures very low temperatures, such as those 

experienced early in the planting season in the highlands.  

Follow up research examining the mechanisms responsible for the phenomenon we 

observed (differential germination rate according to elevational type at 10.0 ºC) is warranted. 

Our work has helped identify a narrow range of temperatures (10.0 ºC or below) within which 

this pattern can be observed, and could be foundational for further studies examining the activity 

and thermotolerance of enzymes or other biological processes (such as imbibition) that affect 

germination. Our work also suggests that a period of cold temperature (11.4 ºC), followed by 

exposure to warmer temperatures (25 ºC) does not necessarily harm seedlings after seven days 

but does harm seedlings after 21 days. Since temperature in the field is constantly changing, 

further inquiry into the effect of periods of cold temperatures is greatly needed. It is possible that 

periods of cold temperature, which slows the germination rate of populations from different 

elevational groups differentially, could impart advantages to cold adapted populations, since 

early germination is often advantageous from an evolutionary perspective. 
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The fact that midland populations outperformed the others across temperature treatments 

may be due to increased plasticity or other factors, such as increased vigor. Vigor in seeds could 

result from adaptations to factors other than temperature (tested here) or could result from hybrid 

vigor. On this latter point, it seems likely that midland populations might frequently cross with 

lowland or highland populations or farmers might mix in seed from these other sources, given 

the intermediate character of the midland environment. If midland crosses with these other types 

are successful (i.e. seeds survive and reproduce), then midland populations could acquire a wider 

genetic base.  Some of this diversity might influence hybrid vigor. Of course, while the patterns 

indicated by our research may endorse this hypothesis, much more research would be needed to 

make this determination. What our research clearly indicates is that across these treatments, the 

midland populations were significantly more fit in this stage of the life cycle in an ex situ, 

common garden situation.  

It is also possible that the different fitness levels could be the result of seed quality. Seed 

quality is partially defined as the ability of a seed to germinate rapidly and uniformly across 

temperatures (Ellis, 1992). The differing seed quality could be the result of the health of the 

maternal plant, genetics, or possibly different life strategies for the various populations. For 

example, perhaps midland populations produced less seed per ear or per plant than highland 

populations, but the seed they produced was of higher quality. It is interesting to consider seed 

quality in this way, as a life strategy of the plant rather than a characteristic of the seed. Further 

research is needed to ascertain whether midland plants always produce the highest quality seed 

because it is part of an evolutionary strategy or if seed quality relative to other elevational types 

is stochastic. 



35 
 

Another reason that we could be seeing increased midland seed fitness is that the seeds 

from different elevational groups may age differentially. Our populations were grown and 

collected in 2010 and  they have sat for approximately 2 ½ years. It is possibly that this length of 

time could have reduced seed quality in lowland and highland types more quickly than the 

midland types, as they consist of different maize races with substantively different phenological 

traits. Unfortunately, the effect of ageing would be difficult for us to determine without knowing 

the health of the population when it was first harvested and at varying intervals afterward. This 

would be a fascinating follow up experiment. 

The human dimension of agriculture also further truncates our ability to describe and 

predict the genetic changes occurring at a population level for landraces in Chiapas (Mercer and 

Perales, 2010). This is due to the fact that farmers are the final arbitrators of what gets planted 

each year. Since most farmers in Chiapas plant three seeds per hole (Mercer, personal 

communication), seed quality may not be highly important as a driver of selection. If only 33% 

of the seed a farmer planted survived, a farmer’s yield could still remain unaffected. 

Nevertheless, these potential varying life strategies are of interest to biologists and should be of 

interest to agronomists as well, since high germination rates for some populations may indicate 

that portions of the seeds planted could be saved and eaten.  

In conclusion, our research is illustrates a distinct, although not significant, pattern of 

midlands performing better than lowland or highland populations across all temperature 

treatments, except for the coldest temperature used in the themogradient experiment. At this 

temperature, 10.0 ºC, we observed a clear and significant pattern of local adaption; whereby the 

seeds from the highland populations germinated at the highest level and the fastest rate, followed 

the midland and lowland populations. This suggests that local adaption may be observed at 
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temperatures at 11.4 ºC and below, and that local adaption in the seedling phase in response to 

temperature is likely most important in situ in highland gardens in an early planting situations.  

This phenomenon also helps to explain why improved varieties, which perform well in the 

midland and lowland areas, do not perform well in highland environments. These interactions, 

and the light they can shine on the importance of early the early lifecycle in the process of local 

adaptation, are important to understand both from an ecological perspective as well as an 

agronomic perspective in order to assist farmers globally, who benefit from the in situ 

preservation of maize germplasm, and the farmers of Chiapas themselves. 
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Tables 

Table 1: Temperatures measured on the thermogradient table thoughout the course of the 

experiment. Temperatures were designed to emulate temperatures that maize seeds from 

Chiapas, Mexico would likely encounter during the planting season. Mode will be used as short 

hand for temperature in results and figures, but it important to keep in mind that the seeds were 

exposed to a range. The range was produced by the thermogradient table itself, which had a 

small gradient within the bands from one end of the table to the other.   

Temperature 

Band 

Range Mode 

1 7.9-12.01 ºC 10.0 ºC 

2 14.77-14.05 ºC 14.5 ºC 

3 20.22-18.91 ºC 19.5 ºC 

4 24.17-22.72 ºC 23.0 ºC 

5 27.82-26.45 ºC 27.5 ºC 

6 31.92-30.29 ºC 31.5 ºC 

 

Table 2. Test of equality of curves by elevational group at each of the six temperatures used in 

the thermogradient experiment, using the Wilcoxon and Log-Rank statistics in Proc Lifetest. 

Significant effects of P< 0.05 are in bold. 

 

 

Table 3. Test of equality of curves by temperature for each of the three elevational groups in the 

thermogradient experiment, using the Wilcoxon and Log-Rank statistics in Proc Lifetest.  

Significant effects of P< 0.05 are in bold. 

                               Wilcoxon           Log-Rank 

Elevational Group DF X
2 

Pr>X
2 

DF X2 Pr>X
2 

Highland 5 511.576 <.0001 5 627.15 <.0001 

Midland 5 533.407 <.0001 5 673.873 <.0001 

Lowland 5 432.736 <.0001 5 562.067 <.0001 

          Wilcoxon           Log-Rank 

Temperature DF X
2 

Pr>X
2 

DF X
2 

Pr>X
2 

10.0 ºC 2 25.3318 <.0001 2 21.6898 <.0001 

14.5 ºC 2 4.8957 0.0865 2 5.4671 0.065 

19.5 ºC 2 3.4488 0.1783 2 2.014 0.3653 

23.0 ºC 2 6.6837 0.0354 2 9.1838 0.0101 

27.5 ºC 2 17.6521 0.0001 2 18.3415 0.0001 

31.5 ºC 2 17.2745 0.0002 2 22.0589 <.0001 
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Table 4. ANOVA, generated in SAS GLM, identifying the factors affecting cumulative 

germination at day four, seven, ten, and 25 in the thermogradient experiment. Significance (P< 

0.05) is indicated in bold.  

                 Day 4 Cumulative 

                 Germination 

Day 7 Cumulative 

Germination 

Day 10 Cumulative 

Germination 

Day 25 Cumulative 

Germination 

Source D

F 

F 

Value 

Pr > F D

F 

F 

Value 

Pr > F D

F 

F 

Value 

Pr > F D

F 

F 

Value 

Pr > F 

Block 3 50.62 <.0001 3 12.57 <.0001 3 20.49 <.0001 3 13.42 <.0001 

Temperature 

Treatment 

5 74.31 <.0001 5 147.5

8 
<.0001 5 66.91 <.0001 5 22.17 <.0001 

Block* 

Temperature 

Treatment 

1

5 

6.12 <.0001 15 5.56 <.0001 1

5 

5.77 <.0001 1

5 

6.8 <.0001 

Elevational 

Group 

2 3.55 0.0959 2 3.08 0.1199 2 6.42 0.0323 2 12.79 0.0069 

Population 

(Elevational 

Group)  

6 3.99 0.001 6 2.64 0.0183 6 1.67 0.1333 6 0.88 0.5109 

Temperature 

Treatment* 

Elevational 

Group  

1

0 

1.06 0.4243 10 1.08 0.4043 1

0 

4.51 0.0006 1

0 

5.08 0.0002 

Temperature 

Treatment* 

Population 

(Elevational 

Group) 

3

0 

1.02 0.4488 30 1.27 0.1764 3

0 

0.67 0.9029 3

0 

0.72 0.8513 

 

Table 5: Test of equality of curves generated with the temperature treatments used in the 

seedling morphology experiment as strata, using the Wilcoxon and Log-Rank statistics in Proc 

Lifetest.  Significant effects of P< 0.05 are in bold. 

Test DF X
2 

Pr > X
2 

Log-Rank 2 2087.312 <.0001 

Wilcoxon 2 2191.869 <.0001 
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Table 6: ANOVA, generated in SAS GLM, identifying the factors affecting the total percentage 

of seeds that germinated, died, were normal, abnormal, or unfit. Significance (P>0.05) is 

indicated in bold.  

Percent Germinated 

  

  

Percent Dead Percent Normal Percent Normal  

(Standardized) 

Source D

F 

F  Pr > F D

F 

F  Pr > F D

F 

F  Pr > F D

F 

F  Pr > F 

Block 3 2.15 0.1037 3 2.8 0.0482 3 0.78 0.5117 3 0.51 0.6759 

Temp_Trt 2 17.6

6 
<.0001 2 28.12 <.0001 2 16.82 <.0001 2 17.6

3 
<.0001 

Elev Group 2 3.44 0.1009 2 2.11 0.2025 2 2.61 0.1526 2 3.76 0.0874 

Population 

(Elv 

Group) 

6 7.77 <.0001 6 12.44 <.0001 6 8.14 <.0001 6 2.14 0.0631 

Temp_Trt 

* Elev 

Group 

4 4.62 0.0172 4 3.61 0.0374 4 1.83 0.1881 4 1.29 0.3291 

Temp_Trt* 

Population 

(Elev 

Group) 

12 0.93 0.5231 12 1.27 0.264 12 1.42 0.1837 1

2 

1.43 0.1812 

 

Percent Abnormal Percent Abnormal 

(Standardized) 

Percent Unfit 

Source D

F 

F  Pr > F D

F 

F  Pr > F D

F 

F  Pr > F 

Block 3 2.69 0.0547 3 2.7 0.054 3 0.78 0.5117 

Temp_Trt 2 15.4

7 
<.0001 2 15.68 <.0001 2 16.82 <.0001 

Elev Group 2 0.47 0.6436 2 0.52 0.6179 2 2.61 0.1526 

Population 

(Elv 

Group) 

6 1.71 0.1358 6 2.14 0.0633 6 8.14 <.0001 

Temp_Trt 

* Elev 

Group 

4 1.28 0.3331 4 1.25 0.3407 4 1.83 0.1881 

Temp_Trt* 

Population 

(Elev 

Group) 

12 1.43 0.1803 12 1.57 0.1285 12 1.42 0.1837 
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Figures: 

 

Fig. 1 The effect of elevational type on germination of landrace maize from Chiapas, Mexico at 

six temperatures. Germination curves and standard error bars were produced using Proc Lifetest. 

Significant differences among elevational group curves at each temperature are indicated by tests 

in Table 2. 
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Fig. 2 The effect of the temperature on germination rate for landrace maize from Chiapas, 

Mexico among highland, midland, and lowland elevational groups. Germination curves and 

standard error bars were produced by Proc Lifetest. Significant differences among the 

temperatures treatments for each elevational group are indicated by tests in Table 3.  
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Fig. 3 The effect of temperature treatment on cumulative germination of landrace maize from 

Chiapas, Mexico, from the thermogradient experiment. The ls means and standard errors were 

produced in a GLM SAS analysis. Significant differences between bars, elucidated via a Tukey-

Kramer analysis, are indicated using letters.   
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Fig. 4 The effect of population within elevational group on cumulative germination in 

populations of landrace maize from Chiapas, Mexico on days four (Panel A) and seven (Panel 

B). Each population is shown via one bar. We used SAS GLM to generate the ls mean and 

standard error bars. Significant differences found in a Tukey-Kramer analysis are indicated with 

letters.  
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Fig. 5 The effect of the elevation of origin (elevational group) on cumulative germination of 

Mexican landrace maize from Chiapas, on day ten (Panel A) and day 25 (Panel B) in the 

thermogradient experiment. We used SAS GLM to produce the ls means and standard error bars. 

Significance, according to a Tukey-Kramer comparison, is denoted with letters. 
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Fig. 6 The effect of temperature treatment and the elevation of origin on cumulative germination 

of landrace maize from Chiapas, Mexico on day ten (Panel A) and day 25 (Panel B) of the 

thermogradient experiment. Proc SAS GLM was used to produce the ls means and standard error 

bars. Significant differences, as ascertained through a Tukey-Kramer comparison, are denoted 

with letters. Temperatures 23.0 ºC to 31.5 ºC on day ten and 14.5 ºC to 31.5 ºC on day 25 did not 

significantly differ from one another. 
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Fig. 7 The effect of temperature treatments of zero days at 10.0 ºC, seven days at 10.0 ºC, and 25 

days at 10.0 ºC on the percent germination of landrace maize seeds from Chiapas, Mexico upon 

placement into a 25 ºC germinator. Each series represent a different temperature treatment. 

Germination curves and standard error bars were produced using Proc Lifetest. 
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Fig. 8 The effect of temperature treatment on final percent germination of seed lots of landrace 

maize from Chiapas, Mexico in the seedling morphology experiment. Each series represents a 

different temperature treatment. The errors bars illustrate the standard error of the LS means, 

produced in SAS GLM. Significant differences, according to a Tukey-Kramer analysis, are 

denoted via letter.  

Fig. 9 The effect of temperature treatment and elevational group on final percent germination of 

seed lots of landrace maize from Chiapas, Mexico in the seedling morphology experiment. Each 

series represents an elevational group at a temperature treatment. The errors bars illustrate the 

standard error of the LS means, produced in SAS GLM. Differences were not significant.  
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Fig. 10 The effect of temperature treatment on the percent dead in seeds from landrace maize 

cultivars from Chiapas, Mexico in the seedling morphology experiment. Each series represents a 

different temperature treatment. The errors bars illustrate the standard error of the LS means, 

produced in SAS GLM. Significant differences, according to a Tukey-Kramer analysis, are 

denoted via letter. 

Fig. 11 The effect of temperature treatment and elevational group on the percent dead in seeds 

from landrace maize cultivars from Chiapas, Mexico in the seedling morphology experiment. 

Each series represents an elevational group at a temperature treatment. The errors bars illustrate 

the standard error of the LS means, produced in SAS GLM. Significant differences, according to 

a Tukey-Kramer analysis, are denoted via letter.  
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Fig. 12 The effect of temperature treatment on the percent normal seedlings from landrace maize 

cultivars from Chiapas, Mexico in the seedling morphology experiment. Each series represents a 

different temperature treatment. The errors bars illustrate the standard error of the LS means, 

produced in SAS GLM. Significant differences, according to a Tukey-Kramer analysis, are 

denoted via letter.  

 

Fig. 13 The effect of population within elevational group on percent normal in populations of 

landrace maize from Chiapas, Mexico. Each population is shown using one bar. The errors bars 

illustrate the standard error of the LS means, produced in SAS GLM. Significant differences 

found in a Tukey-Kramer analysis are indicated with letters. 
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Fig. 14 The effect of temperature treatment and elevational group on the percentage of normal 

seedlings in landrace maize from Chiapas, Mexico in the seedling morphology experiment. Each 

series represents an elevational group at a temperature treatment. The errors bars illustrate the 

standard error of the LS means, produced in SAS GLM. Differences were not significant. 

 

Fig. 15 The effect of temperature treatment and elevational group on the percentage of normal 

seedlings over the percentage of seeds which germinated in a standard germination test for 

landrace maize from Chiapas, Mexico in the seedling morphology experiment. Each series 

represents an elevational group at a temperature treatment. The errors bars illustrate the standard 

error of the LS means, produced in SAS GLM. Differences were not significant. 
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Fig. 16 The effect of temperature treatment on the percent abnormal seedlings from landrace 

maize cultivars from Chiapas, Mexico in the seedling morphology experiment. Each series 

represents a different temperature treatment. The errors bars illustrate the standard error of the 

LS means, produced in SAS GLM. Significant differences, according to a Tukey-Kramer 

analysis, are denoted via letter. 

 

Fig. 17 The effect of temperature treatment and elevational group on the percentage of abnormal 

seedlings for landrace maize from Chiapas, Mexico in the seedling morphology experiment. 

Each series represents an elevational group at a temperature treatment. The errors bars illustrate 

the standard error of the LS means, produced in SAS GLM. Differences were not significant. 
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Fig. 18 The effect of temperature treatment on the percent of “unfit” seeds and seedlings from 

landrace maize cultivars from Chiapas, Mexico in the seedling morphology experiment. “Unfit” 

seeds and seedlings either died in the course of the experiment or were abnormal, indicating that 

they would not survive beyond the seedling phase in the field. Each series represents a different 

temperature treatment. The errors bars illustrate the standard error of the LS means, produced in 

SAS GLM. Significant differences, according to a Tukey-Kramer analysis, are denoted via letter. 
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Fig. 19 The effect of population within elevational group on percentage of “unfit” seeds and 

seedlings for landrace maize populations from Chiapas, Mexico in the seedling morphology 

experiment. “Unfit” seeds and seedlings either died in the course of the experiment or were 

abnormal, indicating that they would not survive beyond the seedling phase in the field. Each 

population is shown using one bar. The errors bars illustrate the standard error of the LS means, 

produced in SAS GLM. Significant differences found in a Tukey-Kramer analysis are indicated 

with letters. 
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Fig. 20 The effect of temperature treatment and elevational group on the percentage of unfit 

seeds and seedlings for landrace maize from Chiapas, Mexico in the seedling morphology 

experiment. “Unfit” seeds and seedlings either died in the course of the experiment or were 

abnormal, indicating that they would not survive beyond the seedling phase in the field. Each 

series represents an elevational group at a temperature treatment. The errors bars illustrate the 

standard error of the LS means, produced in SAS GLM. Differences were not significant. 
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