Alkaline Phosphatase in the Digestive System of the Desert Locust, Schistocerca Gregaria (Forskal)

Ashrafi, Shahid H.; Naqvi, S. N. H.; Qadri, M. A. H.
ALKALINE PHOSPHATASE IN THE DIGESTIVE SYSTEM OF THE DESERT LOCUST, SCHISTOCERCA GREGARIA (FORSKAL)

SHAHID H. ASHRAFI, S. N. H. NAQVI, AND M. A. H. QADRI

ABSTRACT

Alkaline phosphatase activity was determined in the digestive system of the desert locust, Schistocerca gregaria (Forskal), using p-nitrophenylphosphate disodium as the substrate. The enzyme has an optimum pH of 7.4 and a linear relationship between its concentration and activity. The Michaelis constant was found to be 1.4 x 10^-4 M. The enzyme showed a zero order of kinetics, with an incubation period of up to 25 minutes at an optimum temperature of 40°C. The temperature coefficient (Q10) was 1.960 between 5-15°C and 10-20°C, 1.900 between 20-30°C and 25-35°C, and 1.850 between 30 and 40°C. Salt solutions of MnCl2, MgCl2, CuCl2, and CoCl2 activated the enzyme, while Na3HASO4, Na2HPO4, CuSO4, FeCl2, and CdCl2 inhibited the activity. Maximum activation was produced by 0.01 M MnCl2.

INTRODUCTION

The alkaline phosphatase (ortho-phosphoric monoester hydrolase [3.1.3.1]) has been characterized in holometabolous insects by many workers, including Denuce (1952), Rockstein (1956), Barker and Alexander (1958), Ashrafi (1960), Hodgson (1963), Sridhara and Bhat (1963), Lambremont and Schrader (1964), and Raychaudhri and Butz (1965). The present investigation was undertaken to identify and determine the kinetics of alkaline phosphatase present in the digestive system of the desert locust, Schistocerca gregaria (Forskal), which is a hemimetabolous insect.

MATERIALS AND METHODS

Substrate and Colorimetric Standard

In the present investigation, the modified method of Ashrafi (1960) was followed, because it has a shorter incubation period and a higher sensitivity to the substrate than the method of Bessey, Lowry and Brock (1946). A stock solution (0.0143 M) of p-nitrophenylphosphate disodium was prepared by dissolving 100 mg of substrate in 25 ml of double-distilled and demineralized cold water (Anonymous, 1963). Different concentrations were prepared by further dilution of the stock solution. The working standard solution (0.00005 M) of p-nitrophenol was prepared as described by Ashrafi and Fisk (1961).

Alkaline buffer Solutions

Tris-maleate buffer (0.2 M) was prepared by dissolving 24.2 g of tris (hydroxymethyl) aminomethane and 23.2 g of maleic acid in 1000 ml of double-distilled and demineralized water. Fifty ml of this solution were mixed with a known quantity of 0.2 M NaOH and diluted to 200 ml (Gomori, 1955). The required pH, 6.0 to 8.5, was adjusted using a Beckman Zeromatic pH meter, and a few drops of chloroform were added as a preservative.

Activating and Inhibiting Solutions

Solutions of 22 compounds were prepared in double-distilled and demineralized water. Solutions of CaH2(CH3COO)2, AlCl3, and ZnSO4 were prepared at 0.001 M (final) concentration, MgCl2, KCl, Mg(CH3COO)2, CaCl2, NaCl, BaCl2, FeCl2, CuCl2, CoCl2, Ca(CH3COO)2, MnCl2, HgCl2, Hg(CH3COO)2, and CdCl2 were pre-
pared at 0.01 M, while solutions of NaCN, NaF, Na$_2$HPO$_4$, Na$_2$HAsO$_4$, and CuSO$_4$ were prepared at 0.1 M. One half-ml portion of each of these solutions was used per reaction tube and the 5-ml total volume was maintained by adding 1.5 ml of water.

Enzyme Source

Twenty adult locusts, eight days following emergence, were fed a 6 percent glucose solution for 24 hours before the experiment. Each locust was frozen and then dissected in chilled, double-distilled and demineralized water. The alimentary canal was immediately transferred to a test tube containing 5 ml of water. It was ground for 3 minutes in a “Teflon Pyrex” tissue grinder. The homogenate was filtered through a 2-mm glass fiber layer in a Gooch crucible and the filtrate was collected in a graduated centrifuge tube under moderate suction pressure. The filtrate was diluted to 10 ml so that each ml contained 0.1 part of the ground alimentary canal.

Enzyme Assay Procedure

For enzyme assay, 2 ml of double-distilled and demineralized water, 2 ml of tris-maleate buffer (pH 7.4, 0.2 M) and 0.5 ml of substrate (0.00143 M final concentration) were placed in five test tubes in a tray of crushed ice. After a few minutes, freshly prepared homogenate (0.5 ml) was added to each tube and shaken. The rest of the method followed that described by Naqvi (1966). The spectral-transmittance and concentration-absorbance curves for measuring the activity were prepared as described by Naqvi, Ashrafi, and Qadri (1967).

RESULTS

pH Optimum

The standard assay procedure was followed, using buffers of different pH and with all other factors constant. The optimum pH for alkaline phosphatase present in the digestive system of the desert locust was found to be 7.4 (fig. 1).
Enzyme Concentration

The quantity of the homogenate was varied (0 to 2.50 ml), but the 5-ml volume of the reaction mixture was maintained by adding appropriate amounts of water. The results (fig. 2) showed that a zero-order reaction was maintained throughout the increase of the enzyme concentration.

Substrate Concentration

Different concentrations (0.0001 M to 0.0024 M) of the substrate were used to study the kinetics of enzymatic reaction. The enzyme activity showed a linear relationship up to 0.0006 M substrate concentration, beyond which it entered a zero-order reaction (fig. 3). The Michaelis-Menten constant (Km) was
calculated according to Lineweaver and Burk (1934) and was found to be 1.4×10^{-4} M for an incubation period of 30 minutes (fig. 4).

Kinetics of Enzyme Action

In order to find a suitable incubation period, 1-ml aliquots from the reaction mixture were taken out after different intervals (10–70 minutes), as shown in Figure 5. A zero-order reaction was maintained for 25 minutes, after which the enzyme entered into a first-order reaction.

Figure 4. Lineweaver and Burk graph for Michaelis constant-value calculation.

Figure 5. Optimum incubation period for alkaline-phosphatase activity.
Temperature Effects

The reaction mixtures were incubated at different temperatures, as shown in Figure 6. A sharp increase in the enzyme activity was found from 15 to 40°C, with a sharp decrease after 40°C. The optimum temperature was found to be 40°C. Temperature-coefficient (Q₁₀) values were found to be 1.960 between 5-15°C and 10-20°C, 1.900 between 20-30°C and 25-35°C and 1.850 between 30 and 40°C for an incubation period of 30 minutes (fig. 7).

![Graph showing temperature effects on alkaline-phosphatase activity.](image)

Figure 6. Temperature effects on alkaline-phosphatase activity.

![Graph showing temperature coefficient graph for alkaline phosphatase.](image)

Figure 7. Temperature coefficient graph for alkaline phosphatase.
Enzyme Activation and Inhibition

Alkaline phosphatase activity was greatly enhanced by the addition of MnCl$_2$, CuCl$_2$, CoCl$_2$, MgCl$_2$, and BaCl$_2$, and slightly enhanced by the addition of HgCl$_2$ and Mg(CH$_3$COO)$_2$. It was greatly inhibited by the addition of Na$_2$HAsO$_4$, NaHPO$_4$, CuSO$_4$, and FeCl$_3$, and moderately inhibited by the addition of CdCl$_2$, NaCN, and Hg(CH$_3$COO)$_2$. Among the latter, Na$_2$HAsO$_4$ produced the maximum inhibition, while C$_6$H$_5$Hg(CH$_3$COO)$_2$ (NaCl, KCl, NaF, ZnSO$_4$, CaCl$_2$, AlCl$_3$, and Ca(CH$_3$COO)$_2$ had a negligible effect (fig. 8). Maximum activation was produced by a 0.01-M MnCl$_2$ solution (fig. 9).

![ALKALINE PHOSPHATASE](image)

Figure 8. Influence of activating and inhibiting ions on the rate of alkaline-phosphatase activity.

DISCUSSION

The optimum pH for alkaline phosphatase was found to be 7.4. This pH value is comparable with 7.3 reported by Ashrafi (1960) for the alkaline phosphatase in the whole homogenate of the stable fly, *Stomoxys calcitrans* (L), same procedure.

The enzyme activity was linear with the increase of the homogenate concentration. Fitzgerald (1949) showed a similar relationship with respect to alkaline phosphatase in the egg of the grasshopper, *Melanoplus differentialis*, (Thomas). Although the tissue and the substrate are different, both of these are hemimetabolous insects and belong to the same order.

A zero-order reaction (fig. 3) was found at 0.0006 M concentration of p-nitrophenylphosphate disodium, while Ashrafi (1960) reported the same at 0.0012 M of the same substrate with the stable fly. The Km value for this enzyme was found to be 1.4 x 10$^{-4}$ M, whereas Ashrafi (1960) reported the Km value to be 4.0 x 10$^{-4}$ M for stable fly phosphatase. Lambremont and Schrader (1964) reported the Km value to be 9.39 x 10$^{-4}$ M for pyrophosphatase in the boll weevil. The Km values reported by Wojtczak (1956) and by Hodgson and Kumar (1964)
differ appreciably from the present value. This may be due either to the difference of the substrate or to the source of enzyme (i.e. insect species used). The low Km value supports the view of Gilbert and Huddleston (1965) that p-nitrophenylphosphate disodium is required in lesser amounts than other substrates. Moreover, this value also indicates that the concentration of the substrate (0.0014 M) used during the experiments was adequate for maximum hydrolysis.

A zero-order kinetics was maintained for 25 minutes. This is in agreement with the observations of Ashrafi (1960), who used the same procedure. Moreover, the incubation period (30 minutes) used for testing inhibitors and activators was near the point of maximum hydrolysis and within the period of 40 minutes, after which the rate of hydrolysis decreased considerably. The difference in the optimum incubation period, as compared with the reports of Rockstein (1956) and of Lambremont and Schrader (1964), may be due to differences in species and/or substrates.

Maximum hydrolysis of p-nitrophenylphosphate disodium occurred at 40°C and a sharp decrease above that temperature supports the findings of Sizer (1943). In the present problem, the Q10 values (mentioned in the results) coincide with those reported by Rockstein and Herron (1951) and by Ashrafi (1960).

Analysis of the results shown in Figure 8 indicates that MnCl₂, CuCl₂, CoCl₂, MgCl₂, BaCl₂, HgCl₂, Mg(CH₃COO)₂, and Ca(CH₃COO)₂ activated the enzyme. MnCl₂ activated the enzyme threefold, whereas, CuCl₂, CoCl₂, MgCl₂, and BaCl₂ activated the system to approximately twice its basic activity. Ashrafi (1960) reported activation by Fe²⁺, Co²⁺, Cd²⁺, Mn²⁺, and Mg²⁺. In the present case, FeCl₂ and CdCl₂ were found to be inhibitors. This indicates that the enzyme, alkaline phosphatase, found in the desert locust is of a slightly different nature than the phosphatase reported by Ashrafi (1960) in the stable fly. Further analysis indicates that CuCl₂ activated the enzyme, whereas, CuSO₄ inhibited it. It is suggested that inhibition by CuSO₄ is due to SO₄²⁻ rather than to Cu²⁺. Inhibition
by Cu++, as reported by Lambremont and Schrader (1964), is due either to the difference in insect species or to the concentration of the salt.

As another example of both activation and inhibition by the same cation, HgCl₂ activated the enzyme and Hg(CH₃COO)₂ inhibited it. This indicates that the inhibition by Hg(CH₃COO)₂ may be due to CH₃COO⁻, rather than to Hg²⁺. This view is supported by the fact that more activation was produced by MgCl₂ than by Mg(CH₃COO)₂. Mg²⁺ is present in both compounds and so the factor decreasing activation is the CH₃COO⁻ which has replaced Cl⁻. Hodgson and Kumar (1964) reported Hg²⁺ as an inhibitor, which may be due either to the species difference or to the higher concentration used, because, beyond a certain optimum concentration, activating ions may start inhibiting (Lambremont, 1959). It was also observed that NaCl had no effect, while NaCN, Na₂HPO₄, and NaHAsO₄ inhibited the activity. This suggests that inhibition by the latter three compounds is due to the anions, rather than to the Na⁺ cation. Cyanide has been reported as an inhibitor by Fishman, Green, and Ingilis (1962), and by Lambremont and Schrader (1964) for the alkaline phosphatase of other animals. Although calcium and fluoride have been reported as inhibitors by Lambremont and Schrader (1964) and zinc by Fishman et al. (1962), they produced no effect in the present study.

CONCLUSIONS

On the basis of these results, it may be concluded that the alkaline phosphatase of the intestine of the desert locust may be closely related to those derived from the stable fly, the blow fly, and the boll weevil. Despite the small variations observed with respect to optimum pH, Km value, incubation period, temperature, and behaviour with salt solutions, this enzyme may be grouped among the alkaline phosphatases (3.1.3.1) according to Dixon and Webb (1964).

ACKNOWLEDGEMENTS

This research was supported by a grant to the Department of Zoology, University of Karachi, from the Pakistan Council of Scientific and Industrial Research, Pakistan. Thanks are due to Professor Frank W. Fisk, Ohio State University, and to the reviewers for this journal, who provided constructive criticism and untiring assistance in editing our manuscript.

LITERATURE CITED

