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Abstract 
 
 
 
 
 To date, minimal research has been conducted to determine the intrinsic characteristics of 
fly ash that control the leaching of thallium.  The liquid-solid (L/S) partitioning of thallium 
leached from Cardinal fly ash as a function of pH was examined under laboratory conditions 
using parallel batch extraction. The aqueous phase concentration of thallium decreased with 
decreasing pH. The results suggest that the following three mechanisms facilitate thallium 
leaching from fly ash:(1) dissolution of thallium salts attached to fly ash surface sites, (2) 
desorption of thallium from fly ash surface sites, and (3) thallium release due to underlying 
surface dissolution.  X-ray absorption spectroscopy (XAS) was used in order to determine the 
dominant mechanism facilitating the leaching of thallium. The XAS results were inconclusive 
and the dominant mechanism could not be determined. The L/S partitioning of thallium as a 
function of time was also examined under 1-D mass-transfer controlled leaching. The results 
suggest that the leaching of thallium from fly ash is not a simple diffusion process.  
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Introduction 

 In the United States, approximately 130 million short tons of coal combustion byproducts 

(CCPs) were produced in 2011, 47% of which consisted of fly ash (ACAA 2011).  While 38% of 

the fly ash produced was beneficially used (e.g. substitute for portland cement), the majority of 

the material required disposal in landfills. It is important to understand the behavior of fly ash in 

order to develop effective and environmentally sound management approaches.  

 The Tennessee Valley Authority Kingston Fossil Plant spill in 2008 drew attention to the 

environmental and health impacts of thallium. Approximately 5.4 million cubic yards of fly ash 

and bottom ash were released into the Emory River during the spill (TVA 2009). The Tennessee 

Department of Environment and Conservation (TDEC) and the United States Environmental 

Protection Agency (USEPA) investigated the effected areas to identify potential environmental 

and health impacts, including the suspension of fine particles, the potential accumulation of trace 

elements in river sediment, and the leaching of ash contaminants to surface water (Ruhl et al 

2009). Water quality testing showed that water quality criteria were exceeded for the following 

elements: aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), 

mercury (Hg), and thallium (Tl) (USEPA 2009; TDEC 2009).  The TDEC noted that the highest 

number of criteria violations were for thallium (23 violations). While there has been a significant 

amount of research conducted on the leaching of trace elements such as arsenic, selenium, and 

mercury from fly ash, minimal research has been conducted to determine the intrinsic 

characteristics of fly ash that control the leaching of thallium. 

 Thallium is now considered a priority metal by the USEPA. The USEPA has established 

an enforceable maximum contaminant level (MCL) in drinking water of 2 µg/L and a non-

enforceable MCL goal of 0.5 µg/L. The MCL represents the achievable thallium level with 
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consideration to both human health and cost, while the MCL goal only considers human health. 

The USEPA has also established an Ambient Water Quality Criteria of 0.24 µg/L for thallium 

and soil screening levels of 6 mg/kg for residential soil. These limits reflect that thallium is 

highly toxic, capable of causing gastrointestinal problems and detrimental neurological effects in 

humans (USEPA 2009). 

 Thallium is an inorganic element that naturally exists in one of two oxidation states: Tl(1) 

and Tl(3). In most natural aquatic systems, the predominant oxidation state is Tl(1) (Peter and 

Viraraghavan 2005). Thermodynamically, Tl(1) may form a number of different solids including 

carbonates, oxides, sulfides, and hydroxides. Weathering processes naturally introduce toxically 

insignificant inputs of thallium to the environment. Anthropogenic sources include potash, 

effluents from sulfuric acid production, and the mining and smelting of certain metals (McNeely 

et al. 1979).  Coal combustion is one of the most significant anthropogenic sources of thallium in 

the environment (NRCC 1982). Thallium is believed to volatilize during coal combustion and 

condense on flu ash particles in the cooler parts of the boiler system (Natush et al. 1974; ATSDR 

1992). Thallium tends to concentrate in the smaller size ash fractions (Natush et al 1974). The 

speciation of thallium in fly ash is unknown, but it is a critically important determinant of its 

leaching behavior. 

 In one of the few studies that investigated the leaching of thallium from fly ash and 

CCPs, the Electric Power Research Institute (ERPI 2006; Pugh et al. 2009) examined the 

concentration of thallium in 81 different field leachate samples.  The maximum measured 

concentration of thallium in the samples was 17.58 µg/L and the dominant dissolved species of 

thallium were Tl(1) and TlSO4
-.  The study also noted that the highest levels of thallium were 

found at pH values less than 9 and under oxic redox conditions of +200 to +350 mV. The 
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primary mechanisms facilitating the leaching of thallium were hypothesized to include sulfate 

oxidation, oxide dissolution, and cation exchange. Another study examined the sorption of 

thallium to iron and manganese oxides (minerals constituents prevalent in fly ash) and found that 

the percent sorption of Tl(1) increased with increasing pH over a range of 4-8 (Gadde and 

Laitenen 1974). Nearly zero adsorption is observed in the pH range of 4-6 and approximately 

15% adsorption was observed at pH 8. 

 

Objectives 

 The primary objectives of this research were: (1) to understand the intrinsic 

characteristics of fly ash that control the leaching of thallium under a variety of conditions using 

the recently developed USEPA Leaching Environmental Assessment Framework (LEAF) 

methodology and (2) to understand the molecular-level factors and mechanisms that control the 

intrinsic leaching behavior of thallium from fly ash using X-ray absorption spectroscopy. Insight 

into the factors and mechanisms that influence thallium’s leaching behavior was important in 

understanding how thallium was transported in the environment, which will allow engineers to 

develop more effective remediation techniques and solutions to minimize its release and impact 

to human health and the environment. 

  

Procedures 

 According to the USEPA, the Leaching Environmental Assessment Framework 

(Vanderbilt University 2011) consists of four elements: (1) establishing relevant real-life 

scenarios, (2) performing laboratory tests to determine the intrinsic behavior of a material, (3) 

estimating the flux of elements and long-term release of elements using modeling, and (4) 
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making determinations about the leaching estimates for different scenarios through comparisons 

with various regulatory limits. Laboratory leaching tests were used to examine how fly ash 

composition and solution conditions influence thallium release. Data was obtained on the 

intrinsic characteristics of fly ash that influence the leaching of thallium under conditions in 

which leaching was controlled by percolation and mass transfer. Percolation within a fly-ash 

landfill or infiltration through a low-permeability material represent real life scenarios of 

equilibrium-controlled and mass-transfer controlled thallium release, respectively. 

 

Introduction to Method 1313: Liquid-Solid Partitioning as a Function of Extract pH Using 

Parallel Batch Extraction Procedure 

 Method 1313 uses parallel batch extraction to obtain a series of extracts of solid materials 

(eluates), which may be used to estimate the liquid-solid partitioning (LSP) of thallium as a 

function of pH under laboratory conditions (22°C). This method provides solutions with 

concentrations considered indicative of leachates under field conditions at comparable ranges of 

pH for the case when the LSP is controlled by aqueous phase saturation of the constituent of 

potential concern (COPC). Eluate thallium concentrations may be used in conjunction with 

information regarding environmental management scenarios to estimate the anticipated leaching 

concentrations and release rate under the conditions evaluated. When LSP is controlled by the 

amount of the constituent present in the solid that may dissolve (i.e., for highly soluble species), 

the mass released (mg/kg), rather than the concentration, is indicative of field conditions.  

 For the purposes of this research, Method 1313 was used to provide values for intrinsic 

Cardinal fly ash parameters that control leaching of thallium under an equilibrium controlled 

scenario at a liquid to solid (L/S) ratio of 10 mL extract/g-dry fly ash (value specified in the 
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method). Liquid-solid chemical equilibrium occurs when rate of thallium desorption is equal to 

the rate of thallium sorption to fly ash particles. This implies that the aqueous and solid phase 

thallium concentration gradient is balanced. 

 

Method1313: Preliminary Testing and Sample Preparation  

 Preliminary testing of the material was required to ensure the accuracy of Method 1313. 

The fly ash particle size was determined in order to establish the minimum dry mass (g- dry) of 

fly ash, the suggested vessel size to hold the fly ash sample and eluent, and contact time required 

to reach equilibrium as specified by LEAF Method 1313. Table 1 lists the extraction parameters 

as a function of particle size. Particle size reduction may be necessary to reduce the contact time 

required to reach liquid-solid equilibrium and to minimize mass transport through large particles. 

However, particle size reduction was not necessary for the Cardinal fly ash sample because 85% 

by weight of the material was made up of particles ≤0.3 mm in size.  Under the direction of 

Method 1313 (see table below), the leaching experiment required a minimum dry mass of 

20±0.02 g-dry fly ash, a 250 mL vessel, and 24 hour mixing to achieve equilibrium. 

 

Table 1. Extraction parameters as a function of particle size under LEAF Method 1313 (Vanderbilt, 2011) 

 

 

 The moisture content of the fly ash was also calculated in order to provide the dry mass 

equivalent of the “as tested” fly ash. The moisture content of the sample fly ash was 
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approximately 0.001 g H2O/g “as received” ash and therefore was considered dry. 

 In order to conduct the parallel batch extraction test, an acid-base schedule was 

formulated from a pre-titration test curve. Two solutions, 500 mL of 1 N NaOH and 500 mL of 2 

N HNO3, were prepared for the pre-titration and parallel batch extraction tests. The NaOH 

solution was prepared by adding de-ionized water to approximately 20.0680 g NaOH (s) until the 

total volume reached 500 mL. The HNO3 solution was prepared by adding de-ionized water to 

approximately 46.98 mL of concentrated HNO3 until the total volume reached 500 mL. The 5 

pre-titration samples were prepared by adding approximately 20±0.02 g- dry fly ash into separate 

250 mL vessels. De-ionized water and the NaOH and HNO3 solutions were added as specified in 

the acid-base schedule below. Each sample was prepared at a liquid-to-solid ratio (L/S) of 10 mL 

extract/g-dry fly ash as specified in the method. Table 2 summarizes the pre-titration test. It 

contains a list of amount of fly ash, volume of acid/base added to each vessel, and the resulting 

leachate pH after 24 hours mixing (equilibrium attained). 

 

Table 2. Resulting acid-base schedule from Pre-titration test 

Bottle 1 2 3 4 
Mass dry fly 

ash (g) 
20.0076 20.0128 20.0063 20.0114 

HNO3 added 
(mL) 

20 10 - - 

NaOH added 
(mL) 

- - - 20 

DI added 
(mL) 

180 190 200 180 

pH 1.39 2.1 8.34 12.33 
 

 Eleven target pH points ranging from 2 to 12 were selected for the parallel batch 

extraction tests. Like the pre-titration samples, the 11 batch test samples were prepared by adding 
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dry fly ash, de-ionized water, and acid/base solutions into separate 250 mL vessels. Each sample 

was prepared at a L/S of 10 mL extract/g-dry fly ash as specified in the method.  Tables 3 and 4 

show the mass of dry fly ash, volume of de-ionized water, and volume of acid/base solution 

added to each vessel. The amount of acid/base and deionized water added to each vessel was 

calculated based on the pre-titration curve. An approximate volume of acid/base necessary to 

achieve a target pH can be read from the curve. 

 

Table 3. Batch samples prepared only with HNO3 solution  

Bottle 1 2 3 4 15 11 
Mass dry 
fly ash (g) 

20.0112 20.0152 20.0057 20.0149 20 20.009 

HNO3 
added (mL) 

10 7.5 5 2 1 0.5 

DI added 
(mL) 

190 192.5 195 198 199 200 

 

Table 4. Batch samples prepared only with NaOH solution  

Bottle 5 14 6 7 9 
Mass dry fly 

ash (g) 
20.0096 20.0033 20.0112 20.0042 20.0068 

NaOH added 
(mL) 

- 1 4 10 20 

DI added 
(mL) 

200 199 196 190 180 

 
 

Method 1313: Parallel Batch Extraction Experiment 

 Figure 1 is a schematic of the batch leaching experiment. After preparation, the samples 

were mixed for 24 hours in an “end-over-end” fashion to attain equilibrium. At the end of 

mixing, the liquid and solid phase were separated via settling. Leachate pH measurements were 

taken and the liquid phase was clarified via vacuum filtration. Glass fiber filter paper (0.70 µ 
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pore size) was used to filter the samples. The resulting solution was collected and preserved 

using approximately 5 mL of HNO3. The concentration of thallium in the solution was measured 

using an 880Z Atomic Absorption Spectrometer. Three standard thallium solutions (1006 ppm, 

20.12 ppm, and 5.03 ppm) and a blank were made to reveal reagent impurities or equipment 

contamination by verifying the accuracy of atomic absorption spectroscopy (AAS) 

measurements. 

 
Figure 1. Schematic of batch extraction test (Vanderbilt University 2011) used to assess the equilibrium release of 
thallium under various site pH values and liquid-to-solid ratios. 
 
 
Introduction to Method 1315: Mass Transfer Rates of Constituents in Monolithic or compacted 
Granular Materials Using a Semi-Dynamic Tank Leaching Procedure 
 
 Method 1315 of LEAF provides intrinsic material parameters for release of inorganic 

species under mass transfer controlled leaching conditions. This test method was used to obtain a 

series of eluents, which may be used to estimate the diffusivity of constituents and physical 

retention parameters of the solid material under specified laboratory conditions. Method 1315 

can be used to test anything from a 1-dimensional (1-D) through 3-dimensional (3-D) mass 

transfer cases. In all cases, the sample size was at least 5 cm in the direction of mass transfer and 

the liquid-to-surface area ratio (L/A) was maintained at 9 ± 1 mL/cm2. The solvent system used 

in this characterization method is de-ionized water. For the purposes of this research, Method 

1315 was used to provide the mass transfer rates of thallium contained in Cardinal fly ash under 
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1-D diffusion controlled release conditions, as a function of leaching time.  

 

Method 1315: Preliminary Testing and Sample Preparation 

 Sample preparation under Method 1315 requires fly ash to be compacted at a moisture 

content corresponding to 90% of the optimum packing density in order to provide a uniform 

approach to obtaining a sample density that approximates field conditions. The optimum 

moisture content refers to the mass of water in the fly ash sample (g H2O/g sample) that was 

present at the optimum packing density (g-dry material/cm3). Dr. Tarunjit Butalia, a research 

scientist at Ohio State University, had prior knowledge of the optimum moisture content of the 

Cardinal Fly ash sample (10%). The following formula was used to calculate the mass of the 

water added to the sample (Ww) to achieve 10% moisture content (W%): W%=Ww/Wd * 100% 

where Wd was equal to the mass of the dry fly ash sample. Approximately 1150.8 g of fly ash 

and 115 mL of water was added into a rectangular, plastic tub and mixed until homogeneity is 

achieved. 

 Method 1315 specifies that the sample holder be composed of an impermeable material 

or other material resistant to high and low pH. Fly ash samples were mechanically packed into 6 

different cylindrical (3 in. diameter) high-density polyethylene (HDPE) molds. The ash was 

compacted to a height of 6 inches (the total weight of the holder and fly ash reached 

approximately 270 to 275 g). The wall thickness of the molds was such that the distance between 

the outside of the mold surfaces and the leaching vessel were < 0.5 cm as specified by Method 

1315. The mass of each mold was measured and recorded (See Table 5).  

 As specified in Method 1315, 25 blows were required to achieve optimum packing 

density. After the samples were packed, the mass of each mold with sample was measured and 
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recorded (See Table 5). The mass of the fly ash in each mold was calculated by subtracting the 

mass of the mold from the mass of the mold with fly ash sample. 

 

Table 5.  Total mass, mass of the HDPE molds, and the mass of the fly ash for 6 different molds 

Sample Total Mass Mass of Mold 
Mass of Fly 
Ash 

1 276.65 76.43 200.22 
2 269.71 76.37 193.34 
3 272.36 76.2 196.16 
4 273.27 76.09 197.18 
5 275.38 76.41 198.97 
6 270.46 76.2 194.26 

 

 The volume of de-ionized water required for the tank-leaching procedure was determined 

using the following formula: Vw= 3.14* r2 * (L/A) where r equals the radius of the sample 

surface area (face) exposed in cm. and (L/A) was equal to 9 mL/cm2.  Approximately 410 mL of 

de-ionized water was needed for the tank-leaching procedure. A 1 L leaching vessel was used to 

hold the samples. The height of the sample holder (HDPE mold containing fly ash) was altered 

using a handsaw to correspond with the height of deionized water in the leaching vessel.  The 

sample was placed at the bottom of the leaching vessel with the exposed face facing the top of 

the leaching vessel. However, 410 mL of de-ionized water was insufficient, as it did not provide 

the necessary distance between the top of the eluent and the solid-liquid interface. Therefore, an 

extra 45 mL of de-ionized water was added to the leaching vessel. Adding 45 mL of water did 

not exceed the 9 ± 1 mL/cm2 L/A. 

 

Method 1315: Leachate Tank Test 

 Figure 2 is a schematic of the leachate tanke test. The schedule of leaching intervals and 

cumulative release times are listed in table 6.  At the end of each interval, the sample holder was 
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removed from the leaching vessel and placed in another leaching vessel containing 455 mL of 

de-ionized water. Leachate pH measurements were taken and the liquid phase was clarified via 

vacuum filtration. Glass fiber filter paper (0.70 µ pore size) was used to filter the samples. 

Approximately 250 mL of the resulting solution was collected and preserved using 

approximately 5 mL of HNO3. The concentration of thallium in the solution was measured using 

an 880Z Atomic Absorption Spectrometer. Three standard thallium solutions (1006 ppm, 20.12 

ppm, and 5.03 ppm) and a blank were made to reveal reagent impurities or equipment 

contamination by verifying the accuracy of AAS measurements.  

 

Table 6. Schedule of Eluate Renewals  
Interval 

Label 
Interval Duration 

(hr) Interval Duration (d) 
Cumulative Leaching 

Time (d) 
T1 3 ± 0.5 - 0.125 
T2 3 ± 0.5 - 0.25 
T3 18 ± 0.5 - 1 
T4 - 1 ± 0.1 2 
T5 - 5± 0.1 7 
T6 - 7± 0.1 14 
T7 - 7± 0.1 21 
T8 - 7± 0.1 28 

 
Figure 2. Schematic of leachate tank test (Vanderbilt 2011) used to determine leaching when mass transfer 
processes control thallium release. 
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X-ray Absorption Spectroscopy: X-ray absorption near-edge structure (XANES) and extended 
X-ray absorption fine structure (EXAFS) 
 
  In addition to determining the intrinsic leaching characters of thallium for fly ash, 

X-ray absorption spectroscopy was used to determine the molecular association of thallium with 

fly ash to gain insight into the leaching process. X-ray absorption spectroscopy is a technique 

used to determine the structure of matter. The process uses high energy x-rays to generate 

photoelectrons that induce electronic scattering interactions (C.S. KIM et al. 2000). These 

interactions gives rise to the X-ray absorption near-edge structure (XANES) and the extended X-

ray absorption fine structure (EXAFS), which were analyzed to derive the redox state, 

interatomic distances, oxidation state, coordination number, and identify the nearest neighbors of 

thallium in fly ash samples. This information can be used to understand and explain the data and 

model results developed by the Method 1313 and Method 1315. The data can also be used to 

determine if thallium associates with chloride, sulfate, carbonate, etc. in fly ash in different 

particle sizes. 

 

X-ray Absorption Spectroscopy: Sample Preparation 

 For the purposes of this research, X-ray absorption spectroscopy was used to (1) 

determine what thallium species (chloride, sulfate, carbonate, etc.) were associated with different 

particle sizes of fly ash and (2) determine which species of thallium leached. Therefore, three 

different particle-size samples were prepared via sedimentation. A 10 ft high PVC pipe was 

filled with de-ionized water. To hinder leaching during sedimentation, a fly ash solution (pH 

12.68) was prepared by adding base and de-ionized water as in Method 1313. The fly ash 

solution was poured into the PVC pipe and the solution was left to settle.    A solution containing 

“coarse” particles was collected after 5 minutes of settling, a solution containing “medium” 
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particles was collected after 60 minutes of settling, and the remaining solution collected 

contained the “fine” particles. The fly ash particles were separated via vacuum filtration and 

oven dried at 105°C. The paticle size distribution of of the three fly ash samples were analyzed 

using Mastersizer. In addition to the three fly ash samples, an “as received” and “pH 2 leached” 

sample were prepared to investigate which species of thallium leached. The “pH 2 leached” 

sample was prepared as specified by Method 1313. After 24 hours of mixing, the fly particles 

were separated via vacuum filtration and oven dried at 105°C. 

X-ray Adsorption Near Edge Spectroscopy (XANES) 

 Thallium L(II)-XANES spectrum was collected using Beamline 20-ID-B with insertion 

device at the X-ray Science Division of Advanced Photon Source at Argonne National 

Laboratory, Argonne, IL. The electron storage ring at APS provided energy of 7.0 GeV with a 

topup fill status. Beam energy was calibrated by the adsorption edge of TlCl at 14707 eV. The 

XANES spectra were collected in fluorescence mode with one solid-state 4-element detectors 

under ambient temperature.  A Si(111) monochromator was used for energy selection with an 

energy resolution (DE/E) of 1.4×10-4 (eV/eV). Except for the leached sample, each sample was 

scanned 50 times.  In addition to the five fly ash samples, five Tl references, i.e., Tl2CO3, 

Tl2SO4, TlCl, TlCl3, and Tl2O3 (ACS reagent grade; Sigma-Aldrich, Milwaukee, WI), were also 

included.  These 5 specific references were chosen based upon the likelihood of formation during 

the combustion process due to the presence of Cl2, CO2, and SO2 in flue gas.  Each reference was 

scanned three times. The XAS data process software, ATHENA, was used to analyze the Tl 

XAFS spectra.  Data reduction, including background subtraction, normalization, and averaging, 

was done in a standard manner.   

 



  21 

 

Results 

pH Dependence Analysis  

 Figure 3 is a plot of the leachate equilibrium pH (post-mixing) as a function of the 

amount of acid/base added to the sample. In Figure 4, the aqueous phase concentration of 

thallium is plotted as a function of pH. Table 7 is a summary of the batch leaching results. All 

values less than limit of detection (0.130 µg/L) were recorded as “< 0.130”. The concentration of 

thallium decreased at a decreasing rate as the pH of the leaching solution became more basic. 

The thallium fraction in the fly ash available for dissolution also decreased at a decreasing rate as 

pH increased. Previous elemental analyses determined that the concentration of thallium in the 

sample fly ash was 12 ppm by mass. The calculated maximum and minimum available fractions 

of thallium in the fly ash were 17.9% (at pH 2.05) and 0.00% (at pH 12.68), respectively.  

  
Figure 3. Titration curve produced by adding acid/base to 20.00 g dry fly ash, L/S 10 mL solution/g dry fly ash. 
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Figure 4. Thallium dissolution and pH dependence 

 
Table 7. Summary of results under LEAF- Method 1313 

pH 
concentration 
(µg/L) mass ug/g 

available 
fraction (%) 

2.05 286.32 20.0112 2.1103 23.8 
2.43 194.502 20.0152 1.9435 16.2 
3.28 141.382 20.0057 1.4134 11.8 

4.3 93.169 20.0149 0.9310 7.8 
5.72 62.823 20 0.6282 5.2 
7.35 26.762 20.009 0.2675 2.2 
8.55 21.801 20.0096 0.2179 1.8 
9.48 15.813 20.0033 0.1581 1.3 

10.78 6.37 20.0112 0.0637 0.5 
12.11 3.001 20.0042 0.0300 0.3 
12.68 0.292 20.0068 0.0029 0.0 

 

 Leaching results show a strong dependence on solution pH, reflecting the importance of 

the following three mechanisms in facilitating the leaching of thallium from fly ash: (1) 

dissolution of thallium salts attached to fly ash surface sites, (2) desorption of thallium from fly 

ash surface sites, (3) thallium release due to underlying surface dissolution.  
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 The relationship between pH and the dissolution of thallium salts attached to fly ash 

surfaces can be explained by equilibrium chemistry. In solution, salts will dissolve and reform. 

The system (salt in solution) reaches equilibrium when the rate of salt formation is equal to the 

rate of salt dissolution. The solubility of a salt (the quantity of salt that can dissolve in acid/base 

solution) is dependent on the anion or cation affinity for excess H+ or excess OH-, respectively.  

For example, the solubility of Tl2CO3 (Tl2CO3 = 2Tl1+ + CO3
2- ) under acidic conditions is 

dependent on the affinity of CO3
2- for H+. Under acidic conditions, excess H+ will compete with 

Tl+ to interact with CO3
2- and more Tl+ will be left in solution. Therefore, the solubility of the 

thallium salt increases with decreasing pH. Dissolved thallium salts leach from fly ash surface 

sites and leach into the liquid phase. The aqueous phase thallium concentration of thallium will 

increase as the anion or cation affinity for excess H+ or excess OH- (respectively) increases. The 

aqueous phase concentration of thallium increased under increasingly acidic conditions and 

decreased under increasingly basic conditions, which may reflect the high solubility of thallium 

salts under acidic conditions and low solubility of thallium salts under basic conditions. These 

observations are consistent with research conducted by Ryzhenko and Mironenko (1994), who 

observed that the dissolution rates of carbonates and sulfates increased as pH decreased below 5. 

 The relationship between pH and desorption of thallium from fly ash surfaces can also be 

explained by equilibrium chemistry. The leaching process occurs to balance the thallium 

concentration gradient between the aqueous and solid phase. To achieve equilibrium, the rate of 

thallium desorption approaches the rate of thallium sorption to fly ash constituents. However 

under acidic conditions, thallium competes with protons for adsorption sites. Therefore, the 

concentration of thallium in the aqueous phase will be greater than the concentration of thallium 

under neutral or basic conditions. The aqueous phase concentration of thallium increased under 
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increasingly acidic conditions, which may reflect thallium desorption from fly ash surfaces under 

acidic conditions. This is consistent with research conducted by Gadde and Laitenen (1974), who 

found that desorption of thallium from iron and manganese oxides (minerals constituents 

prevalent in fly ash) decreased with increasing pH over a range of 4-8. 

 The results also reflect that the fraction of thallium available for leaching (and ultimately 

the aqueous phase thallium concentration) increases as conditions become more acidic. As fly 

ash surface groups dissolve, the underlying matrix is exposed and previously trapped fractions of 

thallium become exposed and available to leach. At low pHs, excess protons catalyze the 

dissolution of surface groups (e.g. iron oxides and aluminum silicates). Protons attach to oxygen 

in the surface groups, removing electron density and decreasing the strength of metal-oxygen 

bond. As a result, the surface groups are released and the underlying matrix becomes exposed to 

the solution.   

  

Mass Transfer Analysis 

 Table 8 contains the aqueous phase thallium concentration for two separate trials at the 

end of each cumulative time interval.  All values less than limit of detection (0.130 µg/L) were 

recorded as “< 0.0130”. In figure 5, the thallium flux is plotted against the mean interval time. 

Thallium flux (F) in mg/m2 is calculated using the following formula:  

 

F= ([Tl]* V)/(A*(ti-ti-1))  

where [Tl] is the aqueous phase concentration of thallium in mg/L, V is the volume of de-ionized 

water added to the leaching vessel (0.455 L), A is the fly ash surface area exposed to the eluate 

(0.00456 m2), ti is the cumulative time (s) at the end of the current leaching interval, and ti-1 is the 
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cumulative time (s) at the end of the previous leaching interval. The mean interval time (T) was 

calculated using the following formula:  

 

T=(√(ti)+√(ti-1))/2)2 

where ti  is the cumulative time (s) at the end of the current leaching interval, and ti-1 is the 

cumulative time (s) at the end of the previous leaching interval. 

  In figure 6, the cumulative mass of thallium is plotted against the cumulative leaching 

time. Over the course of the first day, the thallium flux decreased. Therefore, the rate of thallium 

entering the aqueous phase appears to approach the rate of thallium entering the solid phase. 

Over time, the rate of thallium transfer from the ash to the aqueous solution (flux) decreases and 

the rate of thallium transfer from the aqueous solution to the ash increases until the system has 

reached chemical-solid equilibrium and the rates of transfer are equal. 

Table 8. Summary of raw data for leachate tank test 
Cumulative Time 

Interval (d) Concentration (µg/L) Concentration (µg/L) 
0.125 4.656 5.731 
0.25 4.073 4.089 

1 18.046 19.216 
2 41.211 43.032 
7 181.699 183.793 

14 160.68 171.281 
21 94.812 108.952 
35 67.524 74.94 
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Figure 5. Thallium Flux under 1-D diffusion controlled release conditions 
 

 
Figure 6. Cumulative Thallium Release as a function of time 
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 It is important to note that the pH of the eluate varied from 4.02 to 4.75. Table 9 lists the 

pH values and the corresponding cumulative leaching interval. Based on the pH dependence 

analysis, the pH of the eluate solution was expected to be approximately 8.55 and the variations 

in pH are likely to have an effect on the chemical-solid equilibrium conditions.   

Table 9. pH values over the course of leachate tank experiment 
Cumulative Leaching 

Interval (d) Trial 1 pH Trial 2 pH 
0.125 4.62 4.62 
0.25 4.71 4.75 

1 4.72 4.66 
2 4.47 4.5 
7 4.19 4.1 

14 4.08 4.05 
21 4.02 4 
35 4.08 4.09 

  

 A diffusion coefficient could not be calculated using Crank’s simple diffusion model. 

Under Crank’s model, the logarithm of the cumulative release plotted versus the logarithm of 

time plot is expected to be a straight line with a slope of 0.5±0.15. The two plots generated using 

the experimental results have an average slope of 0.8968.  The results reflect that Crank’s 

assumptions were not valid for thallium leaching from fly ash. Therefore, thallium leaching from 

fly ash was not a simple diffusion process. The thallium flux results may provide insight into the 

rates of the three mechanisms hypothesized to facilitate the leaching of thallium from fly ash. 

The dissolution of thallium salts and desorption of thallium from fly ash surface sites may be 

faster than the dissolution of the surface groups. 

 

X-ray Absorption Spectroscopy Analysis 

 Figure 7 contains graphs/tables showing the particle size distribution for the “coarse”, 

“medium”, and “fine” particles collected via sedimentation. The median diameters (by volume) 
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are 84.27 µm, 25.71 µm, and 15.15 µm for the “coarse”, “medium”, and “fine” particles, 

respectively. 

 

(a) 
 

  
 
 
(b) 
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(c) 
 

 
Figure 7. Particle size distribution for (a) coarse (b) medium and (c) fine particles 
 
  

 Figure 8 is the normalized and the first derivative of Tl L(II)- XANES spectra of fly ash 

samples and references.  The shoulder at the pre-edge of the “as received” spectrum seems to be 

a combination of Tl(III) oxide and Tl(I) carbonate. The right shoulder at the adsorption edge of 

the “as received” spectra is similar to Tl(I) carbonate. The feature of the “as received” spectrum 

after the adsorption edge is similar to Tl(I) sulfate but seems to be more complex, which suggests 

the presence of Tl(I) sulfate and other Tl compounds, such as chlorides and carbonate. The 

spectrum of the “coarse” sample has a feature similar to “as received” at the pre-edge region, 

indicating the presences of Tl(I) carbonate and possibly Tl(III) oxide. The “as received” and 

“medium” samples have very similar features at the right shoulder of the adsorption edge, which 

suggests Tl(I) sulfate may also be present in the “medium” sample. The presences of thallium 

chlorides in the ash samples are not clear.  
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(a) 

 
 
 
(b) 

 
Figure 8. (a) Normalized (b) first derivative of Tl L(II)- XANES spectra of fly ash samples and references 
 

 
 The linear combinations of standard spectra to the five ash spectra were fitted using the 

ATHENA software to determine the presence of thallium species in the fly ash sample. Table 

10 contains the results from linear combination fitting. The fits were processed using the first 
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derivative of normalized µ(E) spectra. The fitting results indicate that Tl might present in the 

“as received” fly ash in the form of carbonate, chloride, sulfate, and oxide. Carbonate and 

sulfate were likely the dominant species.  More thallium presented in the coarse fraction of 

the fly ash in its chloride form. There was no significant difference between the medium and 

fine fractions. No chloride was observed after leaching.  

Table 10. Results from liner combination fitting  

 
Tl(I) 
carbonate 

Tl(I) 
chloride 

Tl(I) 
sulfate 

Tl (III) 
chloride 

Tl(III) 
oxide 

R 
factor 

Reduced 
c2 Sum 

As 
received 0.188 0.134 0.477 0 0.214 0.080 

7.28E-
05 1.013 

Coarse 0.211 0.457 0.311 0 0.027 0.147 
1.54E-

04 1.006 

Medium 0.570 0 0.385 0 0.083 0.059 
5.54E-

05 1.038 

Fine 0.387 0.098 0.463 0 0.067 0.090 
8.72E-

05 1.015 

Leached 0.428 0 0.613 0 0.12 0.240 
3.69E-

04 1.161 
 
 
Conclusion 
 

 The evaluation of thallium release as a function of pH suggests that the following three 

mechanisms facilitate the leaching of thallium from fly ash: (1) dissolution of thallium salts 

attached to fly ash surface sites, (2) desorption of thallium from fly ash surface sites, (3) thallium 

release due to underlying surface dissolution. The X-ray absorption spectroscopy results did not 

provide any concrete insight into the dominant mechanism facilitating the leaching of thallium 

from fly ash. However, they reflect that thallium may associate with chloride, oxide, sulfate, and 

carbonate in fly ash and that Tl(1) chloride may leach at pH 2. Thallium mass transfer results 

suggest that thallium leaching from fly ash was not a simple diffusion process and that the 

dissolution of thallium salts and desorption of thallium from fly ash surface sites may be faster 
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than the dissolution of surface groups.  

Future Work 

 The XAFS results could be improved by performing more scans to increase the signal to 

noise ratio and including more thallium references. This would likely produce more 

distinguishable results, allowing for improved determination of what thallium species were 

associated with different particle sizes of fly ash and which species of thallium leached. Also, 

sedimentation may not have been the best choice to separate the different particle sizes, as it may 

have caused geopolymerization and changed the surface chemistry of the fly ash. Separation via 

sieve would be effective and would not expose the fly ash to conditions that may change the 

surface chemistry of the fly ash.   

 The leachate tank experiment under Method 1315 could be improved by performing the 

experiment immediately after sample preparation. In this research, the tank test was performed 

approximately 2.5 weeks after sample preparation due to the trip to Argonne National Lab, 

which may have been enough time for changes to occur in the chemical form of the fly ash. 
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Appendix 
 
Table A-1. Raw data for pH Analysis Method 1313 
 

Bottle pH 
Concentration 

(µg/L) Mass 
1 2.05 286.32 20.0112 
2 2.43 194.502 20.0152 
3 3.28 141.382 20.0057 
4 4.3 93.169 20.0149 
5 8.55 21.801 20.0096 

Check [5] - 4.766 - 
6 10.78 6.37 20.0112 
7 12.11 3.001 20.0042 

11 7.35 26.762 20.009 
14 9.48 15.813 20.0033 
15 5.72 62.823 20 

Check [5] - 5.216 - 
9 12.68 0.292 20.0068 

 
Table A-2. Raw data for Mass Transfer Analysis Method 1313 
 

Cumulative 
Time 

Interval (d) 
concentration 

(T1) 
concentration 

(T2) 
mass (ug) 

(T1) 
mass (ug) 

(T2) 
0.125 4.656 5.731 2.11848 2.607605 
0.25 4.073 4.089 1.853215 1.860495 

1 18.046 19.216 8.21093 8.74328 
2 41.211 43.032 18.751005 19.57956 
7 181.699 183.793 82.673045 83.625815 

14 160.68 171.281 73.1094 77.932855 
21 94.812 108.952 43.13946 49.57316 
35 67.524 74.94 30.72342 34.0977 

Check [5] 5.141 4.745 - - 
  
 
Table A-3. Limit of Detection Data 
Trial Concentration  
Check Standard [5] 4.515 
Check Standard [5] 5.141 
Check Standard [5] 4.536 
Check Standard [5] 5.024 
Check Standard [5] 5.022 
Check Standard [5] 4.978 
Check Standard [5] 4.096 
Check Standard [5] 4.745 
Check Standard [5] 4.103 
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Table A-4. Calculated flux under Method 1315 
 
Mean 
Interval (d) Flux (T1) Flux (T2) Avg. Flux STD DEV 

0.03125 4.30349E-05 5.2971E-05 4.8003E-05 7.02589E-06 
0.182138348 3.76463E-05 3.77942E-05 3.77203E-05 1.04571E-07 

0.5625 2.77995E-05 2.96019E-05 2.87007E-05 1.27446E-06 
1.457106781 4.76136E-05 4.97175E-05 4.86656E-05 1.48769E-06 
4.120828693 4.19856E-05 4.24695E-05 4.22276E-05 3.42145E-07 
10.19974747 2.65205E-05 2.82702E-05 2.73954E-05 1.23723E-06 

17.3232141 1.56489E-05 1.79827E-05 1.68158E-05 1.65027E-06 
27.55544171 5.57248E-06 6.18449E-06 5.87848E-06 4.32758E-07 

 
 
 
Table A-5. Calculated cumulative mass of thallium over time 
 
 Cumulative 
Internval (d) 

Cumulative 
Mass µg (T1) 

Cumulative 
Mass µg (T2) 

0.125 0.46477715 0.572087167 
0.25 0.871357334 0.980264522 

1 2.672768084 2.8984685 
2 6.786584911 7.194063503 
7 24.92437345 25.54088197 

14 40.96397666 42.63871168 
21 50.42842064 53.51465671 
35 57.1688872 60.99541265 

 
 
Table A-6. Calculated LOG values of cumulative time and cumulative mass as specified under Method 1315 
 

LOG 
Cumulative 

Time (d) 

LOG 
Cumulative 

Mass µg (T1) 

LOG 
Cumulative  

Mass µg (T2) 

AVG LOG 
Cumulative 

Mass µg  STD DEV 
0.903089987 0.332755231 0.242537794 0.287646513 0.063793361 
0.602059991 0.059803709 0.008656715 0.034230212 0.036166387 

0 0.426961277 0.462168585 0.444564931 0.024895326 
0.301029996 0.831651287 0.856974267 0.844312777 0.017906051 

0.84509804 1.39662425 1.40723589 1.40193007 0.007503563 
1.146128036 1.61240211 1.629804074 1.621103092 0.012305047 
1.322219295 1.702675367 1.728472744 1.715574055 0.0182415 
1.544068044 1.757159739 1.785297174 1.771228456 0.019896171 

 


