On the Commutativity of the Boundary and Interior Operators in a Topological Space

Staley, David H.
ON THE COMMUTATIVITY OF THE BOUNDARY AND INTERIOR OPERATORS IN A TOPOLOGICAL SPACE.—N. Levine [2] discovered that, in a topological space, the interior and closure operators will commute if and only if the set on which they operate is the symmetric difference of a set that is both open and closed and a set that is nowhere dense. The intent of this paper is to characterize those sets for which the interior and boundary operators will commute.

The following notation will be used:

- cA—closure of A
- CA—complement of A
- $Int A$—interior of A
- BA—boundary of A
- $A\mathcal{V}B$—symmetric difference of A and B

Lemma 1: If $\{X,T\}$ is a topological space and A and E subsets of X, then $Int(A\cap E) = IntA \cap IntE$.

Lemma 2: If $\{X,T\}$ is a topological space, A and E are subsets of X, and A is open and E is dense, then $c(A \cap E) = cA \cap cE = cA$. This is an exercise on p. 57 in Kelley's book (1955).

Lemma 3: If $\{X,T\}$ is a topological space and A is a subset of X, then $IntBA \cap BIntA = \emptyset$.

Proof:

$$IntBA \cap BIntA = Int(cA \cap CA) \cap cIntA = IntcA \cap IntcCA \cap cIntA \cap cIntA = IntcA \cap cIntA \cap cIntA = \emptyset.$$

Lemma 4: If $\{X,T\}$ is a topological space and A is a subset of X, then $IntBA = BIntA$ if and only if $IntcA = cIntA = IntA$.

Proof: *Necessity.* Suppose $IntBA = BIntA$. Then these sets must both be empty in order to be equal since by lemma 2 they have nothing in common. Thus

1. $IntBA = IntcA \cap cIntA = \emptyset$
2. $BIntA = cIntA \cap cCA = \emptyset$

Equations 1 and 2 imply $IntcA \subseteq cIntA$ and $cIntA \subseteq cCA = IntA$ respectively. Since $IntA \subseteq IntA$, it follows that $IntA = IntcA = cIntA$.

Sufficiency. Suppose $IntcA = cIntA = IntA$. This implies that $BIntA = \emptyset$ and $IntBA = \emptyset$, and thus the two sets are equal.

Theorem: If $\{X,T\}$ is a topological space and A is a subset of X, then $IntBA = BIntA$ if and only if $A = E \cup \mathcal{P}$, where E is open and closed, \mathcal{P} is nowhere dense, and $E \cap \mathcal{P} = \emptyset$.

Proof: Using lemma 4, the proof reduces to showing that $IntcA = cIntA = IntA$ if and only if $A = E \cup \mathcal{P}$, where E is open and closed, and $E \cap \mathcal{P} = \emptyset$.

Necessity. Suppose $IntcA = cIntA = IntA$. By Levine's theorem (Levine, 1961), it follows that if $IntcA = cIntA$, then $A = E \mathcal{V} P$ where E is open and closed and P is nowhere dense. Thus it is left to establish what further conditions the second equality places on E and P. In Levine's proof, $E = cIntA$. Thus $E = Int(cE \cap \mathcal{P})$. $Int(cE \cap \mathcal{P}) = c[(cE \cap \mathcal{P}) \cup (CE \cap P)] = c[(CE \cap CP) \cup (P \cap E)] = c[(CE \cap CP) \cup (P \cap E)]$. By lemma 2 and the fact that CP is dense it follows that $C[(CE \cap CP) \cup (P \cap E)] = CCE \cap CE \cap (P \cap E) = CE \cap CP$. Therefore, $E = E \cap CC(P \cap E)$ which implies $P \cap E = \emptyset$.

Sufficiency. Suppose $A = E \cap \mathcal{P}$, E is open and closed, P is nowhere dense, and $E \cap \mathcal{P} = \emptyset$. By Levine's theorem, $cIntA = IntA$. Int $A = Int(E \cup \mathcal{P}) = CC(CE \cap CP) = CCE = E$. Thus $IntA$ is closed and it follows that $cIntA = IntA = IntA$.

DAVID H. STALEY, Ohio Wesleyan University, Delaware, Ohio.

REFERENCES

