AXIe: AdvancedTCA® Extensions for Instrumentation and Test

Presentation to PDV, Columbus, OH
9 September, 2010
Steve Narciso, AXIe TC co-chair, Agilent Technologies
AXIe Specifications: What and Why

• **What is it?**
 ▫ A family of next-generation, open specifications that extends Advanced Telecom Computing Architecture (AdvancedTCA®) for general purpose and semiconductor test

• **Why another modular test standard?**
 ▫ Higher performance per rack inch
 ▫ Greater scalability
 ▫ Integrates easily with PXI, LXI and IVI
 ▫ More modularity, more flexibility, higher speeds => addresses a range of platforms
 • ATE Systems, rack-and-stack modular, bench top, module plug-ins
 ▫ Significant reduction of development and unit costs

* AdvancedTCA is a registered trademark of the PCI Industrial Computer Manufacturers Group (PICMG)
Why AdvancedTCA as a foundation?

- **AdvancedTCA PICMG® 3.0 Specification**: *proven* open system architecture
- **Large board size**
 - Ideal for high performance instrumentation
 - Board size matches that of planar instrument design
- **Rack space efficiency**
 - Horizontal and vertical configurations
- **Scalability**
 - 1 slot to 16 slots, 1 Chassis to many, PXI/PCI adapters
- **Ideal for high power applications**
 - Single rail power management and robust cooling
- **Virtual LXI and PXI**
 - Base fabric support of LAN, data fabric support of PCIe
- **Robust system management**
 - Intelligent Platform Management Interface (IPMI) enables both single chassis and multi-chassis system control functions
- **Extensions** for I/O, custom backplanes, liquid cooling

PICMG is a registered trademark of the PCI Industrial Computer Manufacturers Group.
AXIe Specification Structure

AXIe is a scalable family of specifications allowing a portfolio of applications.

<table>
<thead>
<tr>
<th>Zone 3</th>
<th>Other future Apps</th>
<th>AXIe 3.1</th>
<th>AXIe 3.N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCA topologies of stars, meshes and slot numbers</td>
<td>• Examples:</td>
<td>• Zone 3 signals</td>
<td>• AXIe 3.N specifications define Zone 3 capabilities for specific markets</td>
</tr>
<tr>
<td></td>
<td>• Network Test</td>
<td>• DUT I/O on RTM</td>
<td>• Can define specific additional system management and system resources.</td>
</tr>
<tr>
<td></td>
<td>• Physics</td>
<td>• Add’l Trigger/Sync</td>
<td>• May work on top of a standard ATCA topologies or AXIe 1.0</td>
</tr>
<tr>
<td>ATCA</td>
<td>• Liquid Cooling</td>
<td>• Analog Busses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Custom</td>
<td>• FRU & RTM Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATCA</td>
<td>AXIe 1.0</td>
<td>• ATCA + Core Triggers, Timing and Local bus</td>
<td>• AXIe expands on the spectrum of allowable ATCA Zone 1 and 2 topologies to include AXIe 1.0, allowing embedded data transfer and synchronization enhancements</td>
</tr>
<tr>
<td></td>
<td>• AdvancedTCA PICMG3.0, PICMG3.4</td>
<td>• LAN + PCIe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• LAN + PCIe</td>
<td>• System Management</td>
<td>• ATCA is the base specification for all AXIe specifications</td>
</tr>
<tr>
<td></td>
<td>• System Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ATCA is the base specification for all AXIe specifications.
AXiLe 1.0 and 3.1 Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>1.0</th>
<th>3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe & LAN Hubs</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Local Bus</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Trigger Bus (TRIG)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Frequency Reference (CLK100) & Sync (SYNC)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Star Trigger (STRIG)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bidirectional DSTAR (4)</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>User Defined Synchronization Signals</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Load Board Support</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Field Calibration Support</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
AXIe leverages ATCA

AXIe

AdvancedTCA

• AdvancedTCA specific extensions
• IPMI and resource management
• Timing and Sync
• Zone 3 configurations

...draws from and works with existing instrument standards

PXI
• Virtual PXIe instruments
• PCIe communication

IVI
• Standard drivers work in all Application Development Environments
• VISA specifications

LXI
• Virtual LXI instruments
• LAN communication
High scalability of AXIe

1U Horizontal

Specialty instrument with AXIe module

14 slot Vertical

PXI carrier module
AXIe integration with Rack and Stack

LXI Box Instruments
AXIe (LAN and PCIe on backplane)
PXI

GP-IB Instruments

Common control via
- Rack mounted controller, or
- Embedded controller in chassis, or
- Desktop controller

Note: Graphic for example only, instruments do not need to be co-located in same rack unit.
Module size comparisons

3U-PXI VXI AXle

AXle AXle 3U-PXI VXI
AXIe Performance for Signal Acquisition

- **Measurement Accuracy**
 - AXIe includes EMC requirement to help address issues with module-to-module interference

- **Data Reduction**
 - AXIe’s wide and fast local bus allows data to be transferred from a signal acquisition module to a data processing module for in-chassis data reduction

- **Data Transfer**
 - 4-lane PCIe gen2 allows 16Gbit/s transfer from a module to an internal or external computer.
 - No backplane PCIe switch bottleneck since the PCIe switch is on the system module

- **Operational Software**
 - Connects to PC like PXI and could utilize IVI
 - Adds LAN to also allow peer-to-peer connections like LXI
Summary

• Extending AdvancedTCA
 ▫ AXIe is based on AdvancedTCA with extensions for instrumentation and test.

• General Purpose (1.0) & Semiconductor Test (3.1)
 ▫ AXIe will have a base architecture specification of AXIe 1.0 for general instrumentation, and a Zone 3 specification AXIe 3.1 for semiconductor test.

• More Performance, Scalability, Flexibility
 ▫ AXIe delivers higher performance in a flexible, scalable platform.

• PXI, LXI, IVI
 ▫ AXIe works well with other standards, such as PXI, LXI and IVI.

• Lower costs
 ▫ Enables significant reduction of development and unit costs.

• Longevity
 ▫ Promises longevity due to high performance coupled with layered specifications
Specification Management

- **AXIe Consortium**
 - AXIe Consortium manages AXIe 1.0 and 3.1 specifications
 - For more information, go to www.axiestandard.org or email Bob Helsel, Executive Director at execdir@axiestandard.org

- **Potential future AXIe standard efforts**
 - Improved integration of ATCA, AXIe 1.0, and AXIe 3.1 combinations
 - AXIe 2.0 software specification
 - AXIe 3.N specifications for additional markets
 - Fully integrated PXImc
 - MicroTCA® derivatives for AXIe

MicroTCA is a registered trademark of the PCI Industrial Computer Manufacturers Group (PICMG)
Technical Overview Slides

- AdvancedTCA
- AXIe 1.0
- AXIe 3.1
Technical Overview Slides

- AdvancedTCA
- AXle 1.0
- AXle 3.1
PICMG 3.0 AdvancedTCA Specification

- AdvancedTCA (Advanced Telecom Computing Architecture)
- Larger form factor cards
- Flexible power (48V) and air cooled design
- PICMG 3.4 Specification for PCIe signaling on Zone 2 Fabric
- Intelligent Platform Management Interface (IPMI)
AdvancedTCA Shelf (Chassis)

- 2-16 Slot Shelf
 - 2-14 Slots in 19” Rack
- 2 Hub Slots
- 14 Node Slots
- User Zone 3 Backplane
AdvancedTCA Front Boards (Modules)

- 322mm x 280mm
- >200W Power Dissipation
- 1.2 in card spacing
Advanced TCA Backplanes

• Zone 2
 - Serial Fabric and Base Channels
 - Dual Star to Hub Slots
 - Reference Clocks
 - Update Channel Links

• Zone 1
 - Power
 - IPMI
 - Geographical Address
 - Telecom Analog Buses
Advanced TCA Connector summary

- **ZONE 3:** Rear Transition Module is an AdvancedTCA option traditionally used for I/O
- **ZONE 2:** Serial fabric and reference clocks. Allows 4 lanes of PCIe
- **ZONE 1:** Power and Management
- PICMG allows each slot connector to be customized
- Typical configuration is a dual star
- ZONE 1: Power and Management
Technical Overview Slides

- Advanced TCA
- AXle 1.0
- AXle 3.1

AXle Base Architecture Specification
AXIe 1.0 Chassis

• Logical Slot 1 (Hub 1 slot) is the AXIe System Slot
• Logical Slots 2-14 (Hub 2 and Node slots) are AXIe Instrument Slots
• Logical Slot 2 (Hub 2 slot) is also the AXIe Instrument Hub Slot
 • Fabric Channel 2 open for proprietary or future definition
• Up to 13 instrument modules in a 14 slot chassis
• Zone 3 reserved for AXIe defined extensions
AXIe 1.0 Communication and Timing

- LAN and/or PCIe connectivity to host computer
 - LAN distributed over Base Fabric
 - PCIe distributed over Data Fabric
 - PCIe reference clock distributed over FCLK star

- AXIe Core GP Timing and Triggering
 - Star CLK100 (100Mhz), Star SYNC
 - Matched length
 - Star STRIG - Matched Length
 - Trigger Bus (12 MLVDS pairs)
 - Local Bus (18 to 62 LVDS pairs from slot n to slot n+1)
AXIe 1.0 Leverages AdvancedTCA Specifications

- PICMG 3.0 AdvancedTCA Specification
- Mechanical, Power, and Intelligent Platform Management Interface (IPMI)
- Base Interface: Gigabit Ethernet LAN
- PICMG 3.4 Specification for PCIe signaling on Zone 2 Fabric

...but adds

- High speed segmented local bus between adjacent slots
 - Utilizes unused transport fabric and base channel pins for AXIe Local Bus
 - 18 high speed differential pairs per link minimum, up to 62
- Timing and Triggering
 - Synchronous and asynchronous timing and trigger lines
 - Fabric clock for PCIe reference clock distribution
 - Utilizes ATCA telecom-defined clock and Update Channel pins

Result: Powerful general purpose instrument architecture that does not impact or use Zone 3, allowing compatibility with current AdvancedTCA products and any AXIe extensions that use a defined Zone 3.
AXIe 1.0 Connector Summary

- RTM connectors and space reserved for AXIe extensions
- Utilize Dual Star fabric:
 - FC1 for PCIe
 - FC2 proprietary
- Eliminate slots 15 and 16
- Utilize Unused base and fabric pins for Local Bus
- Utilize Update Channel pins for Timing Interface and Trigger Bus
AXIe 1.0 Backplane Layout (14-slot Example)

Timing Interface: Clocks and star triggers

Trigger Bus: Parallel triggers

Local Bus: 18, 42 or 62 pairs

PCIe Data Fabric: x4 link to each slot (Second star data vendor-defined).

1Gb Ethernet LAN

IPMB: Intelligent Platform Management Bus used for chassis system control functions

Power Rail: (-48V)

Note: System Module may be built into the chassis

Note: Graphic shows 14 slots as example only
AXIe 1.0 System Module

- Resides in Logical Slot 1
- Sources CLK100, SYNC, and FCLK
- Routes Star Trigger (STRIG) to Instrument Modules
- Connects to Trigger Bus
- Routes signals between TRIG, STRIG, SYNC, and external trigger connections
- Switch/Hub for LAN and PCIe
AXie 1.0 Zone 2 Backplane Block Diagram

System Slot

- TRIG[0:11]
- CLK100
- SYNC
- PCIe x4 (13)
- LAN (13)
- Bidirectional STRIGs (13)
- FCLK

Each Instrument Slot

- TRIG[0:11]
- CLK100
- SYNC
- STRIG
- LBL(0:61)
- FCLK
- PCIe x4
- LAN
- LBR(0:61)
AXIe 1.0 Timing Interface Topology
AXIe 1.0 Local Bus Topology
Technical Overview Slides

- Advanced TCA
- AXle 1.0
- AXle 3.1

AXle Semiconductor Test Extension
AXIe 3.1 Vision

- Create instruments, sub-systems and systems in open standard formats for semiconductor test applications
- Support both bench top Characterization and Production Automatic Test
- Standard Chassis for
 - High Speed Digital Pins
 - DC & Power Instrumentation
 - High Channel Count Instrumentation (i.e. multi-site)
AXIe 3.1 Chassis

- Defined Zone 3 Backplane
 - DUT (Device Under Test) I/O in RTM
- Layered on top of ATCA or AXIe 1.0 Zone 1 and 2 backplane
- Enhanced System Module
- Up to 15 instruments in 16 slot chassis
AXIe 3.1 Extensions

- Timing and Triggering Extension
 - Star Triggers
 - User-Defined Synchronization

- Load Board Support
 - DUT I/O via Rear Transition Modules
 - Load Board Configuration Management
 - Power

- Field Calibration Path
 - 4 Wire Kelvin Interface Bus
 - 1 Amp, 300 Volt Max
AXIe 3.1 Triggers

- Asynchronous Triggering
 - 4 Star Triggers from System Module to each Instrument node
 - Bi-directional Differential Terminated BLVDS
 - Matched Length
 - 5ns Min Pulse width

- Custom Synchronization: UserSync
 - 5 star-distributed signals from System Module to each Instrument node
 - Bi-directional Differential Terminated BLVDS, matched length
 - For system-defined instrument synchronization protocols
AXIe 3.1 Triggering: Up To 16 Slot Cage

- Instrument Card Slot 2
- Instrument Card Slot 8
- System Module 1.1 (Slot 1)
- Instrument Card Slot 9
- Instrument Card Slot 16

Star Triggers Balanced Delay Bi-Directional 4 Diff-Pairs Per Slot

UserSync Bus Balanced Delay Uni- or Bi-Directional 5 Diff Pairs Per Slot
AXIe 3.1 Triggering Applications

• Asynchronous
 ▫ Instrument<->Instrument triggering for action<->status operation
 ▫ Encoded triggers to convey information between instruments
 ▫ One-to-many triggering for multi-site testing
 ▫ Multi-chassis trigger support

• UserSync Bus
 ▫ Providing specialized or tightly-timed synchronous triggers
 ▫ Providing matched length, specialized clocks to instruments
 ▫ Synchronizing digital and mixed-signal pins
 ▫ Synchronizing multi-board instruments
AXIe 3.1
Backplane Layout
AXIe 3.1 System Module Slot

- Enhanced System Module Board (i.e. 3.1 SM)
- 32 DUT I/O signals
- Analog and Calibration Bus Support
- Power (+/-15, +/- 5, 48) to DUT Load Board
- I2C Bus for Load Board/Extender Card ID
- I2C Bus to control Load Board/Extender card electronics
- Hub for Point to Point Triggers to node slots
- Hub for Point to Point User-Defined Synchronization bus
AXIe 3.1 Node Slot

- 152 DUT I/O signals
- Support for active electronics in DUT signal path
 - I2C Bus for FRU information
 - I2C Bus for register access
 - Power (+ 5V)
- Four Point to Point Triggers from System Module Slot
- Five-Signal Point to Point User-Defined Synchronization Signals
- Access to Analog and Calibration Busses
Further Information

- Specifications may be downloaded from the AXIe Consortium website at www.axiestandard.org