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ABSTRACT: Dean and Bailes (2010) provide a tutorial on the use of time-series 
analysis in research on music perception and a study of the influence of acoustic factors 
on real-time perception of music. They illustrate their approach with a detailed case 
study of an electroacoustic composition by Trevor Wishart. In this commentary, I 
discuss four aspects of Dean and Bailes’ presentation: first, the importance of focusing 
on dynamic changes in musical structure; second, the benefits of computer-generated 
music for research on music perception; third, the need for caution in averaging 
responses from multiple listeners; and finally, the role of time-series analysis in 
understanding computational information-dynamic models of music cognition. 
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THE DYNAMICS OF MUSICAL EXPERIENCE 
 
GIVEN that music is fundamentally temporal in nature, it is surprising how much research in music 
perception and cognition has focused on static analyses of the experience of musical works. On the 
cognitive side, for example, Lerdahl and Jackendoff (1983) focus on the final state of understanding of a 
piece of music by a listener, while research on musical emotions has tended to focus on the static 
expression of particular emotions by musical excerpts without studying dynamic changes in the ongoing 
emotional experience (see, e.g., Gabrielsson & Lindström, 2010, for a review). 

Dean and Bailes (2010) focus explicitly on the dynamic real-time changes in the listening 
experience, continuing in the tradition of Krumhansl (1997), Schubert (2001) and others. Time-series 
analysis provides an elegant and powerful way of relating continuous dynamic changes in psychological 
experience (or at least the observable behavioural and physiological effects of these changes) to continuous 
dynamic changes in the structure of the music. This is especially important when considering the induction 
of emotion by unfamiliar, instrumental music where affective responses are most likely to be linked to 
dynamic changes in musical and acoustic structure reflecting low-level brainstem responses and high-level 
effects of expectation (Juslin & Västfjäll, 2008). There is a pressing need to go beyond static 
representations of musical attributes such as tempo and mode in understanding how musical passages lead 
to emotional states differing in valence and arousal as well as more aesthetic emotions such as awe and 
frisson (Huron, 2006)  
 

COMPUTER-GENERATED MUSIC 
 
Dean and Bailes (2010) give two reasons for using electroacoustic music in their study: first, to 
demonstrate that their methods generalise beyond Western tonal music which is more often used in 
empirical work on music perception; and second, Red Bird provides an opportunity to test their methods on 
idiosyncratic temporally-localised timbral features in addition to the continuous features which generalise 
to other musical genres (see, e.g., Dean, Bailes & Schubert, 2011). Interestingly, their timbre feature of 
choice is spectral flatness, which they view as a more global indicator of timbre than spectral centroid, 
which is more commonly used in research on music perception (though this is not true of research on audio 
signal processing and music information retrieval where spectral flatness is one of the standard descriptors 
used in the MPEG 7 standard).  
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Dean and Bailes also argue that electroacoustic music can be algorithmically generated in such a 
way that the acoustic and algorithmic parameters of interest are systematically varied in creating stimuli for 
research on music perception. In other work, for example, Dean et al. (2011) extend their approach to the 
effects of intensity on arousal in two pieces written by Roger Dean, one of which is composed in the 
minimalist style. We might legitimately ask what advantage such algorithmically generated music has over 
the stimuli often constructed artificially to create experimental conditions in empirical research on music 
perception.  The most obvious advantage is that the results gain in ecological validity from using stimuli 
created by composers, using stylistically legitimate methods, with an artistic purpose. These results should 
generalise to the experience of similar music outside the laboratory, while results obtained with  artificially 
created or altered musical stimuli are not guaranteed to do so. The advantage of computer-generated music 
over other musical styles is that it can be produced so as to conserve experimental control. This is an 
argument we have made previously in the context of our research on information-dynamic processes in 
minimalist music (Abdallah & Plumbley, 2009; Potter, Wiggins, & Pearce, 2007; Wiggins, Pearce, & 
Müllensiefen, 2009) which has high ecological validity as a significant tradition in Western art music.  

On a more general note, empirical work on music would benefit from greater interdisciplinary 
collaboration between music psychologists and musicians in the creation of stimuli and hypotheses to avoid 
falling foul of both musical and scientific naïvité. 
 

MULTIPLE INTERPRETATIONS 
 
Dean and Bailes (2010) discuss their decision to average series of perceptual responses across participants 
and point to future work in which they analyze the participants' responses individually. It can be dangerous 
to average data from individual participants without first checking for inter-participant agreement. In the 
present case, imagine that two listeners have contrasting valence responses to a particular passage in Red 
Bird; one experiences high valence, the other low valence. There are very good reasons why this might 
happen if, for example, the listeners have different stylistic experiences and preferences. Averaging their 
responses produces a moderate valence score which incorrectly reflects the experience of both listeners.  

However, low inter-participant agreement need not necessarily signal the end of the analysis. A 
complementary approach to aggregating the dependent variable over participants is to explicitly examine 
possible causes of the lack of agreement. We have recently followed this approach in a study of melodic 
segmentation which suggested that any given melody can yield several different grouping structures 
corresponding to different perceptual strategies employed by different groups of participants (Pearce, 
Müllensiefen, & Wiggins, 2010). It remains to be seen whether the dynamics of emotion and change 
perception studied by Dean and Bailes (2010) exhibit multiple interpretations in similar way. 
 

COGNITIVE MODELS AND INFORMATION DYNAMICS 
 
Dean and Bailes (2010) use the term model to refer to a time-series analysis of the relationships between 
particular series. Here a computer program is used as an analytical tool for testing a hypothesis: i.e., that 
changes in loudness generate changes in arousal in the listener. 

There is a very different use of the word model in cognitive science to describe a computer 
program which is intended to reflect, and therefore explain, some aspect of cognitive processing. In this 
case, the program itself embodies hypotheses not about relationships between stimulus structure and 
subjective experience (or its observable concomitants) but about the cognitive processes involved in 
generating the subjective experience from the perceptual input. In this case, for example, we might write a 
program which embodies hypotheses about the cognitive processes responsible for increasing arousal when 
presented with auditory stimuli that increase in loudness. 
 
In their discussion, Dean and Bailes (2010) review an ongoing collaboration with me and my colleagues in 
London, involving time-series analysis and information-dynamic models of music perception. Here the 
time-series models are analytical models while the information-dynamic models are cognitive models. In 
the information-dynamic approach, perception is viewed as a process of ongoing prediction, in which 
surrounding context informs our expectations and the actual outcomes (predicted or not) stimulate learning 
which informs future predictions (e.g, Bubic, von Cramon, & Schubotz, 2010; Friston, 2005; Levy, 2008; 
Pearce & Wiggins, 2011; Reynolds, Zacks, & Braver, 2007; Summerfield & Egner, 2009). Music is an 
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example of a perceptual domain in which these domain-general processes operate; the vast amount of 
experience that most individuals have with music means that we have highly developed, though implicit, 
predictive models which makes music an ideal domain for studying these cognitive processes. Expectations 
are modelled as conditional probability distributions over some aspect of forthcoming musical structure, 
such as the pitch, timing or loudness of the next note given both the previous musical context and a 
lifetime's listening to music. Such distributions yield formal information-theoretic quantities such as 
entropy and information content which can be linked directly to subjective experiences such as uncertainty 
and unexpectedness.2 It has been demonstrated empirically that information-dynamic models predict 
listener's pitch expectations in a range of melodic contexts and styles better than existing models based on 
static rules (Pearce & Wiggins, 2006; Pearce, Ruiz, Kapasi, Wiggins, & Bhattacharya, 2010). 

Information-theoretic quantities such as entropy and information content characterise the 
uncertainty and unexpectedness in actual sequences of events (which might consist, for example, of a 
melody, which is a sequence of pitched sounding notes, or at a lower-level, a sequence of acoustic features 
computed over time-frames of an audio signal). It is also interesting to consider complex information-
dynamic measures which characterise properties of the sequential random process that generates sequences 
of events (e.g., we might consider a musical style as a process that generates melodies in that style). One 
such information measure is the information rate (Dubnov, 2006) which reflects the average amount of  
information to be gained from the past about the present in a sequential random process. As noted by Dean 
& Bailes, (2010), the spectral flatness measure (SFM) they use is related to the information rate assuming 
that the frequency bands of the log-magnitude spectrogram of the audio signal are linear combinations of 
independent Gaussian processes (Abdallah & Plumbley, 2009). In fact, Dubnov computes the information 
rate over three second windows as the sum of the SFM applied to the (decorrelated) cepstral coefficients of 
the audio signal computed over 200ms time windows. Dubnov, McAdams, and Reynolds (2006) report 
significant correlations between the information rate and listeners' ratings of emotional force in The Angel 
of Death by Roger Reynolds.  

Abdallah and Plumbley (2009) examine the application of a number of information measures 
(including the information rate, which they refer to as redundancy) to probabilistic Markov chains (digram 
models specifically) of symbolically represented melody. They introduce the instantaneous predictive 
information (IPI) which characterises the new information that an event carries about future events, given 
the previous events and the predictive information rate (PIR) which reflects the average of this quantity for 
a sequential random process. Abdallah and Plumbley (2009) investigate the extent to which these measures 
reflect the human experience of 'interestingness'. Processes with minimum entropy rates would generate 
completely deterministic sequences while those with maximum entropy rates would generate completely 
unpredictable sequences, both of which would be considered 'uninteresting' by a human listener. This 
implies some kind of inverted-U shaped function linking entropy rate (as a measure of uncertainty or 
complexity) and interestingness (or pleasantness) following theoretical considerations in empirical 
aesthetics (Berlyne, 1974). Abdallah and Plumbley (2009) show that for first-order Markov chains, PIR 
shows such an inverted-U shaped relationship with entropy rate while the information rate of Dubnov 
(2006) does not. Much remains to be done both in terms of our theoretical understanding of these 
information-dynamic measures and their relationship to cognitive and neural processes in human perception 
of music (see, e.g., Pearce et al., 2010). The time-series methods used by Dean and Bailes (2010) are 
perfectly suited to an analysis of how dynamic changes in cognitive, perceptual and emotional processing 
are affected by dynamic changes in information-dynamic models, applied both to the acoustic level as in 
the target article, but also at the symbolic level. 

The decision to focus on isochronous melody in some (but not all, see Pearce & Wiggins, 2006) of 
this research is based on experimental concerns (to ensure that the expectations we elicit from listeners and 
the model are based on pitch alone) rather than inherent limitations of the model. In the spirit of scientific 
reductionism, we decided to fully understand and test the model in one domain (pitch) before examining its 
behaviour with respect to other musical features. We have, however, investigated the effects of temporal 
structure on pitch expectations (Pearce & Wiggins, 2006) and we are currently exploring the extent to 
which information-dynamic models can account for listeners' temporal (Pearce, Müllensiefen, et al., 2010) 
and harmonic (Whorley, Wiggins, Rhodes, & Pearce, 2010) expectations in music. As noted by Dean and 
Bailes (2010), there are subtle issues involved in defining the alphabets over which the models compute 
their probability distributions; in particular, it is important that these reflect realistic perceptual and 
cognitive constraints such as those outlined in the target article. When looking at polyphonic music, it is 
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also necessary to address the question of when and how listeners segregate the auditory input into multiple 
parallel streams (Bregman, 1990) when constructing appropriate contexts for the models. 

As the name implies, dynamic changes in information-theoretic quantities (and the experiences 
they model) as a result of changes in the structure of the auditory input are central to the information-
dynamic approach (Pearce & Wiggins, 2006; Pearce, Müllensiefen, et al., 2010; Potter et al., 2007). In this 
context, time-series analysis as presented by Dean and Bailes (2010) will prove invaluable in investigating 
the relationships between series reflecting listeners' experience (e.g., behavioural ratings, reaction times or 
physiological measures), series reflecting aspects of performance (e.g., expressive timing and dynamics) 
and series reflecting the model's experience (e.g., the degree of uncertainty or unexpectedness), each 
recorded at each time point in the same compositions. Time-series analysis has several advantages over 
other methods in being able to rigorously identify (Granger) causal relationships between series and the 
magnitude of the lead or lag in these relationships.  
 

CONCLUSIONS 
 
Dean and Bailes (2010) present both a tutorial and a genuine research contribution on the use of time-series 
analysis for examining real-time dynamic relationships between the changing structure of the auditory input 
and the ongoing musical experience. This is especially important for longer excerpts of unfamiliar, 
instrumental music where static emotional labels are unable to fully capture the changing nature both of the 
music and of the musical experience. In studying such dynamic responses, computer-generated music can 
be useful for striking a balance between experimental control and ecological validity, especially when the 
music is created with an aesthetic goal in mind (rather than a purely experimental one). One potential 
disadvantage of computer-generated music could be its relative inaccessibility to some individuals, which 
raises the question of individual differences in the experience of tension in Dean and Bailes’ study, which 
remains an important topic for future research. Finally, it is necessary to differentiate analytic models such 
as the time-series models used by Dean and Bailes and cognitive models, which attempt computer 
implementation of a cognitive process to understand how it operates. I have introduced one particular set of 
cognitive models based on statistical learning and information dynamics, which are related to the spectral 
flatness measure used by Dean and Bailes. Future research will put time-series analysis to good use in 
further examining the relationships between the behaviour of these models and human responses in music 
perception and performance.  
 

NOTES 
 

[1] Address for correspondence: Department of Computing, Goldsmiths, University of London, SE14 
6NW, UK, http://www.doc.gold.ac.uk/~mas01mtp 
 
[2] The foundations of modern information theory (e.g., MacKay, 2003) were developed by Claude 
Shannon in his seminal mathematical theory of communication (Shannon, 1948). Particularly relevant here, 
is the portion of Shannon’s theory capturing discrete noiseless systems and their representation as 
stochastic Markov sources, the use of n-grams to estimate the statistical structure of the source and the 
development of entropy as a quantitative measure of the predictability of the source. 
 

An n-gram model (of order n−1) computes the conditional probability of an element ei at index i ∈ {n, 

…, j} in a sequence ej
1 of length j, over an alphabet, E, of elements from which the sequence is composed, 

given the preceding n−1 elements, ei−1
i−n:  

 

 p(ei|e
i−1
i−n)= 

count(e
i
i−n)

count(ei−1
i−n)

, (1) 
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where en
m is the contiguous subsequence (or substring) of sequence e between elements m and n inclusive, 

em is the element at index m of the sequence e and count(x) is the number of times that x appears in some 

corpus of sequences used to train the model. The n-gram model can be used to compute a conditional 
probability distribution over the alphabet E governing the identity of the next element in the sequence. 

Given an n-gram model, the information content, h(ei|e
i−1
i−n), of a given element appearing at index i of a 

sequence e is defined as: 

 

€ 

h(ei | ei−n
i−1 ) = log2

1
p(ei | ei−n

i−1 )
 (2) 

 
and can be interpreted as the degree of unexpectedness (or surprisal) associated with an event appearing in 
a particular context. Highly improbable elements are not predicted to occur and, therefore, provide 
information about the environment when they do, whilst highly probable outcomes are uninformative as 
they were predicted to occur anyway. 

The entropy (or average information content) of the predictive context itself is given by: 
 

 

€ 

H(ei−n
i−1 ) =

e∈E
∑ p(ei | ei−n

i−1 )h(ei | ei−n
i−1 )  (3) 

 
and represents the contextual uncertainty about the identity of the element at index i in the sequence. For 
example, entropy is maximal for a flat conditional distribution in which each element is equiprobable given 
the context. 
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