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RESONANT THERANOSTICS (RT): Progress

RT Objective:

• Use of high-Z nanoparticles (e.g. gold) with X-ray radiation

is more effective in radiation therapy than pure irradiation

- Ejected electrons from the nanoparticles destroy the sur-

rounding malignant cells

• Conventional biomedical methods use intense and broad-

band high energy X-rays in therapy and diagnostics (thera-

nostics) imaging or treatment to ensure sufficient tissue pen-

etration

• To avoid damages incurred by these, RT, aims to find nar-

row energy regions that correspond to resonant absorption or

emission

PRESENT:

• X-ray spectroscopy of Pt compound (cisplatin) commonly

used in medicine, e.g. Chemotherapy

• High energy X-rays intereact only with Pt in cisplatin as Pt

can absorb or emit these photons

• Obtained resonant energy, Eres=64 - 70 keV, when Pt goes

through 1s-2p transitions

• Obtained oscillator strengths (f), transition probabilities or

decay rates (A) and photon absorption coefficients per unit

mass (κ = σ/m) for Resonant Transitions in H- to F-like Pt
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Illustrate:

• At the resonant energies, the attenuation or absorption coef-

ficients κ are orders of magnitude higher than both the back-

ground and that at K-shell ionization energy (EK)

→ Research should focus on Resonant energy band, Eres which

is lie below the K-shell ionization energy, instead on the EK it-

self

• Targeting these energy bands with a tunable monochromatic

X-ray source, Auger processes can be initiated to produce

large number of photons and electrons via photon fluorescence

and electron ejections

• Detected monochromatic Kα X-rays from Zr from an X-ray

machine
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RT METHOD: NANOBIO-SPECTROSCOPY

• Full body CAT scans use high energy broad band
X-rays with very high radiation dosages (left Fig)
• Broadband imaging yields pictures - Spec-
troscopy gives more detailed microscopic and
accurate information
• Spectroscopically targeted radiation should be
far more efficient with reduced exposure
• RT Method: Tumors are doped with nanopar-
ticles of heavy elements for breakup of DNA of
tumor cells by X-rays (right Fig)
• Heavy elements absorb/emit X-rays at higher en-
ergies where biogenic elements (H,C,N,O,CHON)
are transparent
• Direct X-ray impact by a tunable monochromatic
X-ray source and absorption by nanoparticles at
resonant energies
• Fluorescent emission and electron ejections due
to inner-shell ionization following brief impact
• Need a tunable monochromatic X-ray source
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Auger Cascade: ELECTRON & PHOTON EMISSIONS

Auger Process: An electron from a higher level drops to fill

a lower level vacancy, but emits a photon that can knock out

another electron. This can lead to cascade as the vacancies

move upward, more electrons and photons are emitted.

• Fig (i) Ionization by X-ray photons (EX) (> K-shell ioniza-

tion energy EK) leading to Auger process

• Fig (ii) Multiple electron vacancies due to successive Auger

decays leading to emission of photons and electrons

• Single ionization of 1s electron can lead to ejection of 20 or

more electrons in an ion with occupied O and P shells

• Fig (iii) Inverse to Auger - Resonant photo-excitation from

1s → 2p (with L-shell vacancy) by an external monoenergetic

X-ray source with intensity above our predicted critical flux

Φc(νKα) =

∑
ni≥2 giA[ni(SiLiJi) → 2(SLJ)]

gKBKα
. (1)
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RESONANT Kα (1s-2p) TRANSITIONS IN Pt

• Auger cascades are initiated with K-shell ioniza-
tion leading to various ionic states
• The table presents data for resonant K−shell
(1s− 2p) transitions for various ionic states of Pt

Pt:(1s22s22p63s23p63d104s24p64d104f145s25p65d96s)

• E(Kα)= averaged resonant energy (LS), ftot= to-
tal oscillator strength, σres= photoionization cross
section, κ= photo-absorption coefficient
• Kα resonance strengths contribute to photo-
absorption (κ), far more than K-shell ionization
(κ= 8.98 cm2/g at EK= 78.39 keV)(Nahar, Prad-
han, Lim 2011)

Transition Ionic # of Tran- E(Kα) ftot 〈σres(Kα)〉 κ
Array State sitions (keV) (Mb) cm2/g

Pt

1s− 2p H 2 68.071 2.95E-01 2.38E+00 7.35E+03
1s2 − 1s2p He 2 67.746 5.83E-01 4.71E+00 1.45E+04

1s22s− 1s2s2p Li 6 67.666 5.71E-01 4.60E+00 1.42E+04
1s22s2 − 1s2s22p Be 2 67.726 5.09E-01 4.10E+00 1.27E+04

1s22s22p− 1s2s22p2 B 14 67.061 9.03E-01 7.28E+00 2.25E+04
1s22s22p2 − 1s2s22p3 C 35 66.831 1.70E+00 1.37E+01 4.24E+04
1s22s22p3 − 1s2s22p4 N 35 66.803 1.26E+00 1.02E+01 3.14E+04
1s22s22p4 − 1s2s22p5 O 14 67.122 8.09E-01 6.52E+00 2.01E+04
1s22s22p5 − 1s2s22p6 F 2 66.744 1.65E-01 1.33E+00 4.10E+03
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Photo-Absorption Coefficient κ(cm2/g): Pt + hν → Pt+ + e

• Blue curve: Background κ
• Enhancements in κ → at K, L, M (sub)-shells
ionization energies: EK, EL, EM

• Rise at EK, focus of experiments but without
success, for enhanced emission of electrons
• K-α resonances (red), due to K → L excitations,
are in Eres = 64 - 70 keV, below EK

• Photo-absorption by these resonances exceed the
background & jump at EK by orders of magnitude
→ Increase in ejected electrons in Eres
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RADIATION FROM X-RAY MACHINES

• Bremsstrahlung radiation is emitted as electrons

accelerate between cathode & anode of a given

voltage and hit a high-Z target, e.g., tungsten (W)

• The energy range of the Bremsstrahlung varies

from zero to the peak voltage of the machine

• Fig: Shape of Bremsstrahlung of elements, Al

(green), Mo (turquoise) W(red), Au (blue)

Typical Bremsstrahlung of an X-ray Machine

• A filter (e.g. Al) - reduces low energy radiation

• A typical Bremsstrahlung has a maximum at

around 1/3 of the peak voltage

• Fig: Bremsstrahlung with W target & Al filter
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Monochromatic Radiation From an X-ray Machine

• Monochromatic radiation, such as, Kα can be produced

when Bremsstrahlung of flux distribution fB is directed to a

high-Z target (X), rotated at a selective angle

• Inner K-shell ionization followed by radiative decays by

upper shell electron can produce X-ray fluorescence at

monochromatic energies.

• Figure: Production of Kα radiation from Zr (Pradhan et al

2010, unpublished)
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Flourescence Yield, Intensity of the Monochromatic Beam

• The K-fluorescence yield (ωK) can be estimated from the

branching ratio:

ωK = Ar(L−K)/[Ar(L−K) + Aa(L)]

Ar(L - K) = Radiative decay rate for (L → K), Aa = Autoion-

ization decay rate. For high-Z elements, e.f. Pt, ωK > 0.95

→ All photons from the Bremsstrahlung source above the

K-shell ionization energy, E > EK, may be converted into

monochromatic Kα radiation with high efficiency

• The estimated intensity of the monochromatic energy:

I(Kα) ∼ N(X)

∫ E(kVp)

E≥EK

fBσK(E)dE

N(X) = number density, σK = K-shell photoionization cross

section. For Zr: Efficiency of conversion ∼ 2%

• The monochromatic deposition of X-ray energy may then

be localized using high-Z nanoparticles

• The RT scheme predicts considerable production of

electron ejections and photon emissions via the Auger pro-

cess and secondary CosterKronig and super-CosterKronig

branching transitions

10



CONCLUSION

1. We present X-ray spectroscopy of Pt in cisplatin where

we predict resonant energies below the K-shell ionization

threshold for enhanced X-ray absorption

2. We obtained Auger resonant probabilities and cross sec-

tions to obtain total mass attenuation coefficients with res-

onant cross sections

3. We find that the attenuation coefficients for X-ray absorp-

tions at resonant energies are much larger, over orders of

magnitude, higher over the background cross section as

well as to that at K-edge threshold

4. We have been able to produce monochromatic radiation

from the Bremsstrahlung of a conventional X-ray tube ma-

chine
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