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ABSTRACT

Sonar imaging is a technique that can locate objects in a scene from their acoustic

reflections. It utilizes multiple measurements from different angles to create a 2D

image. Conventional imaging algorithms such as backprojection (BP) require a large

number of measurements to produce accurate images. Theory indicates that an al-

ternative approach called compressive sensing (CS) can create accurate images using

just a fraction of the measurements. CS requires that the scene is compressible and

that each individual measurement provides information about the scene, not just a

particular location. The sonar imaging experiment must be designed to meet these

requirements. The purpose of this study is to show that the compressive sensing

framework can be used in sonar imaging with results comparable to conventional

methods. A sonar test stand was built that can measure acoustic reflections from a

scene. A pseudo-random noise (PN) code was used for transmission. Four speakers

and 16 microphones were mounted randomly perturbed from a circle surrounding the

scene. Software was developed to create an image from this data through FBP. Also,

a CS algorithm was developed to reconstruct an image from limited measurements.

This algorithm uses a random subset of samples from each measurement. Initial re-

sults show that FBP can effectively be used to image a scene using acoustic waves.

The CS algorithm yields a similar quality image using less than 10% of the measure-

ments. These results show that CS can be used in sonar imaging to greatly reduce the
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number of measurements that need to be collected. The findings are directly portable

to radar imaging, a field with a high level of research for both military and civilian

uses.
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CHAPTER 1

INTRODUCTION

This thesis describes the research I conducted during the 2010-2011 school year

on acoustic imaging. Chapter 2 overviews SONAR and other imaging modes and

describes the importance of the research. Chapter 3 describes the design and con-

struction of the hardware related to the acoustic imaging test stand. This test stand

was used to measure different scenes as they respond to a transmitted waveform. The

design of these transmitted waveforms is found in Chapter 4. Chapter 5 discusses

backprojection imaging, a conventional approach to image estimation.

Following the discussion of backprojection, Chapter 6 delves into the theory and

approach behind compressive sensing (CS). This is the approach which was used

to reduce the amount of data needed to reconstruct acoustic images. Chapter 7

summarizes the results comparing CS to backprojection and analyzes the images.

Finally, Chapter 8 describes two avenues in which this research would extend easily

and Chapter 9 summarizes the thesis and concludes the report.
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CHAPTER 2

BACKGROUND

2.1 SONAR & Related Imaging Modes

SONAR is a technique where audible acoustic waves are used to measure the

environment by their reflective behavior. It is typically used for underwater imaging,

but can be used effectively with air as the medium as well.

Specifically, acoustic waves can be used to measure distance by timing delays

between echos. These echos vary in strength based on the material, shape and position

of the object they reflected off of. If enough echo measurements are made from

different angles, they can be used to create a 2-dimensional map of reflectivity.

This process is very similar to other types of tomographic imaging such as RADAR

and MRI. RADAR shares the same processing techniques and physical principles with

SONAR, but uses much higher frequency waveforms in the electro-magnetic spectrum.

MRI can be thought of from a tomographic perspective even though many aspects of

it are different.

SONAR was chosen early on as an ideal platform to experiment with imaging

algorithms. Audio equipment is very cheap and easy to use without the need for
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expensive hardware and data acquisition systems. Still though, any results gained

from a SONAR test have relevance to the other imaging modes.

Data Acquisition is often a bottleneck in imaging systems. In MRI, the throughput

of the machine is directly linked to how long a patient must stay in the machine for a

given test. In RADAR systems, often the most costly part of the system is both the

A/D converter and the communication system responsible for sending the measured

information to a processing system. In both of these examples, if the amount of

data that needed to be collected could be reduced, significant gains could be seen in

efficiency.

2.2 Problem Statement

Can image quality be preserved with a substantial reduction in measured data?

If so, at what cost? Specifically, can the theory of compressive sensing (CS) be used

to achieve this goal?

Compressive sensing is a recently formalized notion that many signals and images

are compressible. Therefore, there should be a way to sense them in this compressed

state and not be required to collect nearly as much data. While this may seem

impossible, it is very possible with the right framework for measurement and recon-

struction. There is a fundamental tradeoff between the ability to reduce the data that

is needed with added complexity and uncertainty. This project explores that tradeoff

and examines the effectiveness of compressive sensing in reducing the required data

for acoustic imaging.
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2.3 Imaging Techniques

Computed tomography is an established field and there are many different algo-

rithms for forming an image from a set of measurements. This research focused on

comparing compressive sensing to a very simple imaging technique called backprojec-

tion.

2.3.1 Backprojection Imaging

Backprojection is a common imaging technique where measurements are used

directly to compute an estimate to the image. Each individual measurement has

some ambiguity to it since it is one dimensional. Backprojection assumes that when

there is ambiguity, all possibilities are equally likely. Using this idea, data points are

projected across regions of possibility and the projections are summed together from

all different measurements. Figure 2.1 shows a diagram describing the approach of

backprojection.

Figure 2.1: Backprojection Imaging: Linear Processing
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The illustration shows that the imaging process is completely deterministic and

simply performs some linear processing on the measurements to estimate the image.

This is a quick and effective way to image.

2.3.2 Compressive Sensing Imaging

By contrast, compressive sensing imaging is a type of imaging which relies on

an iterative optimization process to estimate the final image. Figure 2.2 shows this

concept.

Figure 2.2: Compressive Sensing Imaging: Iterative Optimization

Compressive sensing uses a measurement model to understand how elements of the

unknown image affect the measurements themselves. It uses this to iterate through

possible solutions and limits itself to searching only possible compressed solutions. In

this way, an exhaustive search is turned into a solvable optimization through the use

of Linear Programming.
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2.4 Objectives & Design Goals

In order to understand if compressive sensing can provide a benefit to the imaging

process, it was tested and implemented on both simulated and measured data. A

primary goal was to design, construct and test a physical test stand for acoustic

imaging. This involved many steps from hardware selection to physical construction

to early testing and software development.

Another element of design was the transmit waveform used for experiments. Sec-

tion 4.1 goes into detail about the affect of the transmit waveform on testing and

imaging. With the acoustic imaging test stand complete, the next goal was to imple-

ment a backprojection imaging algorithm in order to establish a baseline for image

comparison.

The final objective was to design an approach for compressive sensing and im-

plement it so that imaging could be demonstrated using the built test stand. Later

chapters elaborate more on these different steps.

2.5 Economic & Social Considerations

Since acoustic imaging is relevant to many other imaging technologies, findings

must be carefully examined against the economic and social context of the technolo-

gies that they affect. The approach of compressive sensing imaging has potentially

large benefits for the economics of different imaging modes. Since data acquisition is

often the limiting factor in systems, cost could be reduced greatly if a new technique

reduced data collection by a large amount. This has an impact first on the users

and owners of that technology. Secondly, society as a whole can benefit from this.

If imaging technologies get cheaper, there will be an increased accessibility to them.
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This means that more people can experience the benefits of the imaging technologies.

In this way, there are social gains to be seen from humble improvements in efficiency

for acoustic imaging.
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CHAPTER 3

HARDWARE & TEST STAND DESIGN

An emphasis was placed throughout the project on measured results along side

of simulated results. Therefore, significant work was done to design and build an

acoustic imaging test stand. This test stand allowed for real tests to be conducted

and for both imaging algorithms to be applied to actual images. The following sections

describe the hardware components of the test stand. See Appendix A on page 59 for

a final bill of materials. Design goals for the test stand were:

• Tabletop configuration – 4’x4’ or smaller

• 4 speakers

• 16 microphones

• Mounting system that provides stable positioning and easy adjustment

3.1 Data Acquisition

Initial ideas for the project involved preserving the use of ultrasonic frequencies

(typically those above 20kHz). A data acquisition (DAQ) system was found by David

LaVergne to support sampling at 96ksps, providing up to 48kHz of frequency support.
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The TASCAM US-1641 was the DAQ box purchased for the project. It is home

audio recording equipment that provides for simultaneous recording and transmission

for eight (8) microphones and four (4) speakers. Figure 3.1 shows the front and back

panels of the TASCAM US-1641. The US-1641 has a USB 2.0 interface to a computer

and included drivers. In addition, Cubase LE 4.0 was used to control the box.

Figure 3.1: TASCAM US-1641 A/D-D/A Converter

3.2 Speakers & Microphones

The speakers and microphones are critical components of the test stand. It is

essential that as a system, they have a sufficient response to transmit and receive the

signals used in testing.

Several speakers were purchased initially to use for testing. The frequency re-

sponse of each speaker was compared and any non-linear behavior was noted. A

speaker was chosen made by Tang Band for the test stand. This speaker had the best

9



test results. Figure 3.2 shows the speaker as seen on the test stand. The speaker uses

a neodymium design to provide a very flat response over a rated frequency range of

1.4kHz-20kHz. See Appendix A for detailed specifications.

Figure 3.2: Tang Band 25-302SH 1” Shielded Neodymium Dome Tweeter

Electret condenser microphones are an inexpensive family of microphones that

have good responses over a wide frequency range. They are very small microphones

and can be used with very simple circuits. The TASCAM US-1641 comes with eight

(8) XLR ports which provide 48V of power supply from the box. Also, the US-1641

has built in pre-amplifiers for all of the XLR ports.

A microphone was chosen from CUI Inc. and is shown in Figure 3.3. The mi-

crophone is rated for frequencies up to 20kHz. It was wired according to the wiring

diagram in Figure 3.4. See Appendix A for detailed specifications.

10



Figure 3.3: Electret Condenser Microphone, CUI Inc.

3.2.1 Hardware Operating Range

The speaker was tested by playing a linear frequency modulated (LFM) chirp

which swept frequencies from 20Hz to 48kHz. This signal was used because it has

a high bandwidth but maintains roughly constant power output. Typically, human

hearing is limited to roughly 20kHz. These tests resulted in audible noise coming

from the speaker when the signal was above 30kHz. This led to the conclusion that

something must not be behaving properly. This could be due to non-linear behavior

of the speaker above 30kHz. Because of this, all future testing and chosen waveforms

were restricted to 30kHz or less.

On the lower end of the frequency spectrum, a limit was established at 2.5kHz.

This was chosen to be within the rated operating range of the Tang Band speaker and

also to try and limit interference from the environment. Early tests showed that there

was substantial noise at very low frequencies (10-100Hz) in the test room. Also, much

11



Figure 3.4: Microphone Wiring Diagram

of human speech is below 2.5kHz, so this limit allowed for accidental interference to

not affect testing.

In summary, the signals used with the test stand were limited to 2.5kHz-30kHz.

3.2.2 System Frequency Testing

With the speaker and microphone purchased, testing was conducted to measure

the system frequency response of both together. This measurement was important in

validating the usable frequency range. Also, this provided a tangible way to perform

equalization if needed.

Two approaches were taken for testing: (1) an LFM chirp spanning 2.5kHz-30kHz

over 20 seconds and (2) a pseudo-random noise (PN) code with bandwidth from

2.5kHz-30kHz. During the test, the speaker and microphone were placed close to

each other in a spatially isolated environment to eliminate echoes. The first approach

relies on the long duration of the frequency sweep to accurately test each frequency.

Any echoes present will not substantially change the results since they are very short
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in relation to the signal time. The second approach uses a code which has very nice

autocorrelation properties such that

s(t) ∗ s∗(−t) ≈ δ(t) (3.1)

where s(t) is the PN code and δ(t) is the Kronecker delta function. Since an ideal δ(t)

contains an equal distribution of all frequencies, the correlated PN code contains a

wide spectrum of frequency information. See section 4.2 on page 18 for more details

about the waveform.

One speaker and microphone pair was tested using both methods. The magnitude

response of the frequency spectrum was determined and compared. For the chirp test,

the chirp was transmitted and recorded. Next, the Fourier transform of the recording

was taken and a smoothing filter was applied to the magnitude response. For the PN

code test, the PN code was transmitted and recorded. Then, the recording was match

filtered against the original code. The Fourier transform of the resulting signal was

taken and a similar smoothing operation was performed on the magnitude response.

Figure 3.5 shows the normalized response in dB from both methods over the operating

range defined in section 3.2.1.

The test shows peak response around 5kHz and roughly -10dB response at 20kHz

with no lower than -15dB response at 30kHz. This verified that the speaker and

microphone could be used up to 30kHz even though the ratings did not necessarily

extend to that point. This information could also be used to perform equalization on

each individual channel.
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Figure 3.5: System Frequency Magnitude Response for Speaker/Microphone Pair

3.3 Acoustic Imaging Test Stand

With the speakers and microphones purchased, assembled and tested, the con-

struction of the test stand began. A 4’x4’ wooden base platform was used. Figure 3.6

shows the finished test stand.

3.3.1 Equipment Mounting

Each of the four (4) speakers was individually mounted on a small wooden frame

perpendicular to the platform emitting sound across it. These were mounted at the

center of each edge of the platform as shown in Figure 3.6. Microphones were built

and mounted on vertical bolts from underneath the platform. The design was easily

14



Figure 3.6: Acoustic Imaging Test Stand

adjustable allowing for quick movement of the microphones. The microphone mount

included a lock-nut which attached to the top of the bolt but could easily be removed.

Figure 3.7 shows the mounting of the microphones.

See Appendix A for a Bill of Materials.

3.4 Data Collection using the Acoustic Imaging Test Stand

A protocol was developed for collecting data from a scene for imaging. A template

file was developed for the Cubase software which included settings for all eight (8)

channels in and four (4) channels out.
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Figure 3.7: Microphone Mounting System

The microphones were found to have very low responses across all frequencies.

To increase the signal to noise ratio, the gains on all input channels were set to the

maximum. This was done using the knobs on the front of the TASCAM box. Also,

the output levels for the speakers were maximized to +6.02dB. This was done through

software control using the Cubase program.

Data for 64 different speaker/microphone pairs must be collected for each experi-

ment. This is done by transmitting on each speaker at different times, then segment-

ing the recording on each microphone into four files. Also, data from 16 microphones

is collected by doing two rounds of data collection with eight each time.
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CHAPTER 4

WAVEFORM DESIGN & ECHO PROCESSING

Careful consideration was put into the design of the transmit waveform, s(t), for

the imaging system. A pulse compression scheme was chosen whereby the received

signal is matched filtered against the transmit waveform to generate a narrower com-

pressed peak.

4.1 Design Considerations

There are two desirable signal properties that were designed for:

1. Resolution

2. Signal to Noise Ratio (SNR)

Resolution in a pulse compression system is lower bounded by a function of the

bandwidth of the transmit signal.

dres ≥
c

2 ·BW
(4.1)

where c is the speed of sound, BW is the transmit signal bandwidth in Hz and dres

is the achieved resolution in meters.
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From section 3.2.2, the usable range of frequency for the speakers and microphones

is from 2.5kHz up to 30 kHz. To achieve the best resolution, the full bandwidth was

used. Therefore, the best resolution is

dres ≥
c

2 ·BW
≥

343m
s

2 · 27.5kHz
≥ 6.2mm (4.2)

SNR improves through match filtering. Since the filtering is essentially a pattern

match operation, any noise will be reduced substantially. Therefore, any effect from

noise in the match filtered signal will be reduced. Also, the effect of match filtering

can bring out the signal into a very strong peak response. The combination of both

of these increases the signal to noise ratio.

4.2 PN Code: Description & Correlation Properties

Based on the design requirements above, a pseudo-random noise (PN) code was

chosen as the transmit waveform. The PN Code is a discrete sequence of symbols

in the set {-1,1}. It is designed in such a way that the integral of s(t) ∗ s(t − τ) is

maximal when τ = 0 and as close to zero as possible otherwise. The PN code has

216 − 1 symbols placed at consecutive samples in the 96kHz digital waveform. This

means that it contains all frequencies up to 48kHz.

The resulting PN code is bandpass filtered to only contain frequencies from 2.5kHz

to 30kHz. Table 4.1 lists the properties of the transmit waveform. Figure 4.1 shows

the frequency spectrum of the generated signal.

Choosing s(t) as a PN code described above, the properties can be studied. The

signal is 0.68 seconds long and has a roughly constant envelope. This means that it

can be transmitted effectively without requiring power fluctuations to the speaker.

18



Symbol Set {-1,1}
Sequence Length 216 − 1
Symbol Frequency 96ksps
Analog Signal sinc interpolation
Filtering Bandpass (2.5-30kHz)

Table 4.1: PN Code Characteristics

In the absence of noise, the filtered PN code produces a narrow peak with some

sidelobe structure. Figure 4.2 shows the correlated waveform and a close-up of the

peak structure. The resulting waveform has a waveform roughly 50 samples wide, cor-

responding to 500µs. The main peak is 2 samples wide at the base. This corresponds

to an effective resolution of 7.1mm.

4.3 Echo Processing

The PN code described above was used with the imaging test stand to measure

distances using echoes. The recorded signals from each microphone were processed to

create what is called a range profile in RADAR terminology. This range profile is a

signal that contains narrow peaks that describe the location of the reflective objects

in the scene. Figure 4.3 shows an example range profile where three separate point

reflectors were in the scene.

Three separate echoes can clearly be seen in the figure. These types of measure-

ments were used to construct a 2-dimensional image of scenes.
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Figure 4.1: PN Code Frequency Spectrum

4.3.1 Echoes from Bistatic Geometries

The acoustic imaging test stand is an example of bistatic imaging geometry, where

the transmitter and receiver are placed at different locations. The range profile con-

tains echoes which are placed based on the total path length of the echo. Figure 4.4

illustrates a bistatic geometry.

ttotal = tTx−Rf + tRf−Rx (4.3)

where ttotal is the total echo time, tTx−Rf is the time from the transmitter to the

reflector and tRf−Rx is the time from the reflector to the receiver.

The figure shows that there is an inherent ambiguity with each individual mea-

surement. Different reflectors that are both located along an ellipse with foci as the
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Figure 4.2: Correlated PN Code

transmitter and receiver all have the same total path length, causing their echos to

add constructively in the final range profile. Therefore, it is impossible to distinguish

the echoes from these different reflectors. It is this ambiguity that drives the need for

different angles and more data. Chapter 5 details the process of taking range profiles

and constructing an image directly.

4.3.2 Range Profile Signal Processing

As mentioned earlier, the range profiles are the result of signal processing on the

recorded signal. Figure 4.5 shows the block diagram of the process. First, each of the

64 recordings are match filtered against the PN Code, s(t). Then, they are shifted

in time to compensate for the delay from filtering and the hardware delays of the

system. The hardware delay through the TASCAM box was found experimentally

to be 412 samples, corresponding to 4.29ms. The result is a waveform where the
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Figure 4.3: Example Range Profile

very first data point corresponds to the location of the speaker. Any echos present

are measured from this point. All acoustic waves were assumed to propagate at a

constant speed of c = 343m
s

.

Then, each signal is gated in time to remove echos from objects outside of the

image scene. Using the DAQ sampling rate of 96kHz and the speed of sound, this

limits the final measurements to a few hundred samples.

4.3.3 Background Subtraction

The basic processing described in the prior section is effective and produces range

profiles which describe where the reflective objects in the scene are. However, the

static components of the test stand itself produce many unwanted echoes. Also, the

direct transmission of the signal to the microphone is seen in the range profile.

In order to remove unwanted echos and keep just those that are related to the

scene of interest, a method of coherent background subtraction was used. Since the

scene and test stand is static, the echos measured from the test stand should be
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Figure 4.4: Bistatic Imaging Geometry

repeatable and can be used to selectively remove the unwanted echoes from future

recordings.

As described in section 3.4, for each of the 64 geometries, a recording is made

with no reflective objects in the scene (the background) and also with the reflectors

present. This is done without unplugging the microphones or changing any other

configuration. Both signals are processed to generate a range profile and then they

are simply subtracted from one another. The resulting signal is a range profile that

contains just the echos from the reflectors introduced to the scene. Figure 4.6 shows

this process for a sample data set.
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Figure 4.5: Block Diagram for Processing on Receive

Figure 4.6: Block Diagram for Processing on Receive

The key benefit of this approach is that the affect of the background can be

removed. This is a much easier approach than having to use physical isolation to

remove unwanted echos.

These range profiles are the data provided to the imaging algorithms detailed

in the next chapters. Chapter 5 details a backprojection algorithm while chapter 6

discusses the use of compressive sensing.
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CHAPTER 5

BACKPROJECTION IMAGING

Backprojection is a traditional imaging technique used for many different imaging

modes. It is based on the principle that in the presence of ambiguous locations, the

data will simply be ”smeared” across the entire space of possible locations. These

smears are known as projections. The projections are added up from all the different

geometries and the final image contains constructive interference in the location of

reflectors and destructive interference everywhere else. While the principles of back-

projection are the same for all modes of imaging, the form of the projections depends

on the data collection.

5.1 Bistatic Projections

For bistatic imaging, the projections take the shape of ellipses with foci at the

transmitter and receiver. Figure 5.1 shows a sample projection over the image space

from a simulated range profile.

When the projections are added from all 64 different speaker/microphone pairs,

the result is an image which approximates the scene. Reflective objects are shown

as strong responses because of the constructive sum of all the signals. The other
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Figure 5.1: Elliptical Projections in Bistatic Imaging

locations effectively get canceled out because no more than a few projections pass

through any given point.

5.2 Backprojection Algorithm

The implementation of the backprojection algorithm is fairly straight forward.

Figure 5.2 describes the pseudocode for the algorithm. Essentially, a loop goes

through each pixel location and examines all of the range profiles. The final value of

each pixel is the sum of the appropriate values from each range profile. The appro-

priate value is chosen by calculating the total echo time for the given transmitter and

receiver to that pixel.

Each range profile is interpolated to the pixel grid before beginning. This guaran-

tees the most accurate image for a given pixel grid. See backproject.m in Appendix B

for implementation.
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for each pixel do
for each Tx/Rx do
pixel = pixel + range profile(pixel location)

end for
end for

Figure 5.2: Backprojection Pseudocode

The backprojection algorithm was used on several data sets in order to demon-

strate the quality of the algorithm. First, a single centered point reflector was simu-

lated in MATLAB. The designed PN code was used to create range profiles for each

speaker/microphone pair. The generated range profiles were formed into an image

using the backprojection algorithm. Figure 5.3 shows the resulting image on a dB

scale. This image is known as the Point Spread Function (PSF) and describes how

the imaging algorithm represents a single point reflector in the scene.

Figure 5.4 shows the same test but using measured data and background subtrac-

tion described above. To approximate a point reflector, a single 3
8
” copper pipe was

used as a reflector.

There is a substantial difference in the simulated PSF and the measured PSF.

Section 5.3.2 discusses this problem in more detail.

5.3 Backprojection Inefficiencies

The figures above show a good approximation to the correct scenes but have some

notable flaws. Several of these problems are detailed below.
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Figure 5.3: Simulated Point Spread Function

5.3.1 Point Spread Function

The PSF is a function of both the transmitted waveform and the number of angles

that were measured. If the transmit waveform could generate a perfect δ(t) after

match filtering and all angles were observed, the PSF would be ideal. In practice, the

transmit waveform contains a certain shape. Seen again here in Figure 5.5, the PN

code has a sidelobe structure that is not ideal. The PSF is a 2-dimensional extension

of this sidelobe structure surrounding each point reflector circularly.

The PSF is an inherent part of the resulting backprojection image unless it is

intentionally removed through some deconvolution process.
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Figure 5.4: Measured Point Spread Function

5.3.2 Channel Imbalances

One of the largest differences between the simulated and measured results shown

in Figures 5.3 and 5.4 is due to channel imbalances. The backprojection algorithm

is carefully balanced based on the fact that the response from each channel will be

similar. It is this balance that produces the nice destructive interference at non-

reflective points. If the gains or SNR are different for each channel, this balance is

upset and the resulting image shows the affects of the imbalance.

Figure 5.6 shows the measured range profile from two different channels. The

first from speaker #1 and microphone #1 and the second from speaker #1 and

microphone #9. Two things are apparent from the images. First, the strength of the

echo is different in the two images. Second, the SNR is very different as well. The
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Figure 5.5: PN Code Sidelobe Structure

first graph shows a strong SNR of 30.2dB, while the second has a much lower SNR

of only 15.2dB.

These inequalities were not adjusted for in the backprojection algorithm and there-

fore affected the final images substantially.

See Chapter 8 for an idea to compensate for both Channel Imbalances and PSF

for standard imaging.

5.3.3 Redundant Information

One final criticism of backprojection is that it is wasteful of data and uses many

redundant measurements to produce an accurate image. The measurements are in-

herently redundant to some extent because they describe the same scene but from
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Figure 5.6: Measured Range Profile for Two Channels

different angles. Also, the amount of data used for backprojection is not dependent

at all on the complexity of the image itself. For example, a scene with a single point

reflector needs the same amount of data as a complicated scene with many reflectors

of different shapes.

Compressive sensing reduces the amount of redundant measurements by including

a priori information about the solution. This is described in more detail in the next

chapter.
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CHAPTER 6

COMPRESSIVE SENSING APPROACH

Compressive sensing is an alternate approach to image reconstruction and promises

no loss of quality but uses substantially less data. Section 6.1 details the intuition

behind this approach followed by a Linear Algebra framework for SONAR imaging

in section 6.2. Section 6.3 goes through the formal theory surrounding compressive

sensing and the requirements for success. Sections 6.4, 6.5 and 6.6 describe how this

theory was adapted for the specific acoustic imaging problem. Sections 6.7 and 6.8

describe the process of modeling and solving for images.

6.1 Intuition & Motivation

Compressive sensing is the formalization of ideas and techniques that have been

seen in different settings for many decades. Fundamentally, it says that if a signal or

image can be compressed in some way, there might be a way to measure it directly

in its compressed state. Figure 6.1 shows a common analogy of a digital camera.

It is well known through the success of compression techniques such as JPEG and

JPEG2000 that most images are relatively compressible. In the right basis, many

images can be represented with very few non-zero coefficients without a loss of visual
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Figure 6.1: Camera Analogy for Compressive Sensing

quality. Therefore, the idea of compressive sensing is to sense this compressed state

directly rather than taking in the full image and applying compression after.

If this can be done, then less data can be collected. This is a very important

result for many applications including SONAR, RADAR and MRI. However, there

are certain conditions that must be met to guarantee success. Section 6.3 describes

these conditions. First, the problem of acoustic imaging must be described in a linear

algebra framework.
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6.2 Linear Algebra Problem Description

Acoustic imaging, like all imaging modes, can be described as a system of linear

equations. Backprojection can be thought of as a particular estimation to the solution

of this system and compressive sensing is an alternate approach.

Let x̃ be an Nx1 column vector containing a list of all the N pixels in the unknown

image. ỹ is an Mx1 column vector containing the measurements collected from the

image. Then, A is an MxN matrix which describes how each pixel in the image is

measured. Specifically, the nth column of A is the measured response due to an object

in the nth pixel of x̃. Figure 6.2 shows the formulation of the imaging problem. The

objective is to solve for x̃ such that ỹ = Ax̃.

ỹ

 =

 A


x̃



Figure 6.2: Acoustic Imaging Linear Algebra Formulation

For the backprojection imaging described in chapter 5, the measured data included

64 different speaker/microphone pairs each with 600 sample range profiles.

The measurement vector is defined by stacking all of these 64 measurements on

top of each other into a single column containing all the information.

Compressive sensing offers an approach to solve this system of linear equations

when M << N making the system very underdetermined. A solution can only be
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guaranteed if two conditions are met: compressibility of the image and a sufficiently

incoherent measurement model.

6.3 Compressive Sensing Theory

The mathematical framework for compressive sensing was formalized in [1], [2]

and [3]. They provide mathematical conditions which are sufficient to guarantee an

exact solution. The first condition is surrounding the compressibility of sparsity of

the solution. The second surrounds the incoherence of the A matrix.

6.3.1 Sparsity

An unknown x̃ of size Nx1 is defined to be S− sparse if it contains only S non-

zero elements where S < N . In applications, many signals are not sparse in the

standard basis, but can be described in another basis where they are sparse. Assume

that there exists some linear transformation Ψ such that

ũ = Ψx̃ (6.1)

In other words, the ith element of ũ,

ui =
N∑
j=1

ψi,j · xj (6.2)

where ψi,j is the (i, j)th element of Ψ. In many cases, it is sufficient to threshold the

coefficients in this sparse basis, without a loss of information. A common example is

a truncated Fourier Series. Most of the energy is in the first few terms of a Fourier

series, so an approximation can be made by only keeping the first few terms.

A similar approximation is often made in image compression. Some transfor-

mation such as the Discrete Cosine transform (DCT) or discrete Wavelet transform

35



(DWT) is applied, then only coefficients above a certain threshold are kept. This is

the scheme used by compression schemes such as JPEG-2000.

Once the unknown x̃ can be described so that it is S−sparse, the second condition

must be examined.

6.3.2 Restricted Isometry Property

If two possible solutions for S − sparse ũ are chosen arbitrarily, ũ1 and ũ2, their

difference is defined as ũ∆ = ũ1 − ũ2.

It follows that since both ũ1 and ũ2 are S − sparse, ũ∆ is at most 2S − sparse.

The Restricted Isometry Property (RIP) is a restriction on the A matrix which says

∃ δ s.t. (1− δ)‖ ~u∆‖2
2 ≤ ‖A ~u∆‖2

2 ≤ (1 + δ)‖ ~u∆‖2
2 (6.3)

If the RIP for A is met, then an exact solution for an S − sparse ~x can be found

by solving the optimization equation

x = arg min
x
‖~u‖1 s.t. y = Φx (6.4)

where Φ = A · Ψ. Unfortunately, the RIP cannot be tested since infinitely many

combinations must be tried. A looser criteria states that the columns of A must be

as uncorrelated as possible. In this case, reconstruction is highly likely. If a Gaussian

distribution is used for the A matrix, then the RIP is approximately met when the

number of measurements, M

M ≈ S log2

(
N

S

)
(6.5)
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6.3.3 Phase Transition Plot

If an A matrix is found to be RIP, there is a set of design parameters which can be

chosen: The number of measurements to be taken and the sparsity of the unknown

solution. Work done by [4] produced a plot called a Phase Transition Plot which

shows which parameters will lead to a solvable problem using compressive sensing.

Figure 6.3 shows the phase transition plot as seen in [4].

Figure 6.3: Phase Transition Plot (Donoho and Tanner)

The plot shows ρ vs. δ where ρ = S
M

and δ = M
N

. In other words, δ represents

how underdetermined the system is, with a lower number meaning less equations

than unknowns. ρ is the ratio of non-zero coefficients in the unknown solution to

measurements.
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The plot indicates that in order to be solvable, the ratio of measurements to non-

zero coefficients must be sufficiently high for a given measure of how underdetermined

the system is. The line indicates the boundary where all points below are solvable

using CS and all points above must be solved using exhaustive search.

6.3.4 Solution as an Optimization Problem

Finally, assuming that S, N and M are chosen so the problem is solvable using

CS, the solution can be found using convex optimization (see equation 6.4).

In the presence of noise, if a certain error ε is acceptable, a solution for ~x can be

found by alternately solving

~x = arg min
x
‖x‖1 subject to ‖A~x− ~y‖2 < ε (6.6)

The theory behind convex optimization is beyond the scope of the project. An

algorithm called SPGL1 described in [5] and found at [6] was used to solve these

problems using MATLAB.

6.4 Compressive Sensing Approach to Acoustic Imaging

The compressive sensing theory was used and adapted to the acoustic imaging

problem in order to improve the imaging technique.

6.4.1 Sparsity in Image Domain

To meet the sparsity condition described above, an early choice was made to just

use images which are sparse in the image domain. This means they are composed of

a small number of point reflectors. This was realized using the test stand by imaging

small copper pipes which appear as just a few pixels in the imaging process.
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6.4.2 Alternatives to Restricted Isometry

The RIP is a sufficient but not necessary condition for solvability. It is a difficult

condition to meet with real-world systems, but close approximations can yield useful

results.

As mentioned before, a looser condition on the A matrix is that every subset of

the columns of A are approximately orthogonal. The closer that this condition is, the

better the chances of reconstruction are.

Unfortunately, the A matrix cannot be freely chosen in the acoustic imaging prob-

lem. That is because it encapsulates the effect on measurements due to the transmit

waveform and the positions of the speakers and microphones. These fixed choices

restrict the columns of the A matrix. However, steps can be taken to transform

these measurements using some linear transformation and improve the chances of

reconstruction. Section 6.6 describes the specific approach used for testing.

6.5 Design Restrictions

MATLAB was used with the SPGL1 algorithm to solve the compressive sensing

optimizations. A memory constraint in MATLAB limits matrices to 192 million

elements. In order to stay under this limit, and to try and meet the right ratios

needed to compressive sensing, the following parameters were chosen:

• N = 40,000 unknowns (200x200 pixel image)

• M = 3,000 measurements

• S ≤ 10 point reflectors
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This made sure that the A matrix which is NxM is sufficiently small to be held

in memory at one time. In order to use 3,000 measurements to solve for the image,

150 data points were taken from 20 different speaker/microphone pairs. For each of

the 20 pairs, the full range profile was taken. This range profile was put turned into

an effective measurement which served two purposes. First, it provided a means of

making the measurement more random so that the A matrix columns will be more

uncorrelated. Second, the effective measurement only contains 150 data points, which

meets the design requirement.

6.6 Effective Measurement Formulation

To meet the design requirements for the imaging system, A process was created

to form an effective measurement from range profiles. Figure 6.4 shows the process

in block diagram form.

Figure 6.4: Effective Measurement Processing

First, the 600 point range profile is transformed by a pre-determined Gaussian

distributed 600x600 matrix. This effectively takes each point in the original range

profile and randomly disperses it among all the data points. Then, this randomized
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signal is sampled by taking 150 randomly pre-selected data points. These points

comprise the final effective measurement.

This method was found to produce sufficient randomization in the measurements

so that compressive sensing could work reliably for the scenes that were tested.

It is important to note that this approach of processing the range profile to both

reduce the number of samples and to apply a transformation is not purely in the

vein of compressive sensing. If hardware existed which could do this at the time of

data collection, it would be sufficient. However, this approach does not reduce the

amount of data collected initially, it only selects a portion of the data to use for

demonstration.

Because of this, the results put forward in this thesis can only be considered a

proof of principle; imaging can be done using compressive sensing using the specified

ratios and design parameters. Actual implementation would depend on being able to

collect the effective measurement directly, which may or may not be possible.

See section 8.2 for more information about a different approach which could be

actually implemented in hardware and would likely yield the same results.

6.7 Measurement Model Construction

Once the effective measurements were determined, a measurement model matrix

was created. First, measurements were made from a single centered point reflector to

model the point response. Figure 6.5 show a backprojection image of a single point

reflector using simulated and measured data. Effective measurements from both data

sets were used to model the system.
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Figure 6.5: Point Response (left : Simulated Data, right : Measured Data)

Each column of A was populated by stacking the effective measurements from

each of the 20 geometries used in the test. In order to model the response of each

individual pixel, the images above were simply shifted so that the point reflector was

in each pixel and the measurements were derived from this.

The process is illustrated in Figure 6.6. This approach depends on the response

from the copper pipe being very similar regardless of its location.

An A matrix was constructed for both simulated and measured data and these

were provided as measurement models to the optimization algorithm.

6.8 Image Reconstruction

With the system models constructed, the image was constructed by providing the

SPGL1 algorithm with three parameters: the model A, the measurement ~y and an

error bound σ. Solutions for a 200x200 image generally took a few thousand iterations

taking roughly 10 minutes to compute on a laptop.
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Figure 6.6: A Matrix Construction
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CHAPTER 7

RESULTS

With the software and hardware configured and designed, a simple demonstra-

tive test was performed to examine both backprojection and compressive sensing for

reconstructing images from acoustic data. In both cases, a simulated and measured

result are compared.

The simulated results should mirror the measured results since the same configu-

ration was used. In both cases, the measured position of each speaker and microphone

was used. Also, the transmit waveform described in Chapter 4 was used. In a way,

the simulated images represent the ideal, noiseless images that could be gathered from

the actual test stand. They serve as a good benchmark for comparison.

7.1 Experimental Scene

A common scene was used for all experiments. The scene contains 4 transmitters,

16 receivers and three point reflectors positioned. Table 7.1 lists the measured posi-

tions of all objects. Figure 7.1 shows labeled transmitters and receivers in reference

to the scene.
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Object x y

Transmitter #1 2.1cm 51.0cm
Transmitter #2 49.1cm 0.0cm
Transmitter #3 −1.2cm −50.0cm
Transmitter #4 −50.1cm 0.1cm

Receiver #1 −51.5cm −10.7cm
Receiver #2 −49.7cm −28.5cm
Receiver #3 −30.5cm −49.1cm
Receiver #4 −12.2cm −50.4cm
Receiver #5 9.8cm −49.6cm
Receiver #6 28.7cm −45.8cm
Receiver #7 44.3cm −37.2cm
Receiver #8 46.6cm −18cm
Receiver #9 49.1cm 12.9cm
Receiver #10 52.4cm 34.4cm
Receiver #11 35.8cm 48.9cm
Receiver #12 10.5cm 53.7cm
Receiver #13 −9.2cm 51.1cm
Receiver #14 −27.0cm 47.8cm
Receiver #15 −45.3 39.8cm
Receiver #16 −49.2cm 17.5cm
Reflector #1 4.0cm −3.0cm
Reflector #2 −20.0cm −10.0cm
Reflector #3 −8.0cm 17.0cm

Table 7.1: Measured Positions for Experiment Scene
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Figure 7.1: Transmitter and Receiver Labels

Simulated point reflectors are ideal points in space, producing one single echo.

Measured point reflectors were 8” copper pipes of 3/8” diameter placed perpendicular

to the test stand base. Figures 7.2 and 7.3 show the experimental setup.

All images have 199 x 199 pixels and represent a scene of 0.7m x 0.7m. This

was chosen for several reasons. The image size limits the number of unknowns in

the image. This was a design constraint for the compressive sensing approach. By

choosing the scene size to be 0.7m x 0.7m, each pixel represents very close to one

sample of the range profile at 96kHz.
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Rpixel =
0.7m

199pixels
= 3.52mm (7.1)

Rdata =
343m/s

96, 000samples/s
= 3.57mm (7.2)

where Rpixel is the width of each pixel an Rdata is the range difference between each

data sample. Since Rpixel ≈ Rdata, interpolation has a negligible impact on the

imaging process.

All images are plotted on a dB scale using a colormap in MATLAB.

Figure 7.2: Measured ”Point Reflectors” - Copper Pipes

This scene was used throughout all of the following tests.

7.2 Backprojection Results

Data was collected from all 64 different speaker/microphone pairs and the back-

projection algorithm described in section 5.2 was used. A total of 64x600 = 38, 400
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Figure 7.3: Experimental Scene for Imaging Tests

data points were used in the imaging process. Figure 7.4 shows the result of the

simulated test. The three reflectors are very clearly seen in the image.

Figure 7.5 shows the result using measured data from the acoustic imaging test

stand. The three reflectors are visible as the red dots, but are obscured by other

artifacts in the image.

The differences between the simulated and measured backprojection images are

due to the three factors desribed in section 5.3. The channel imbalances in the system

along with the unequalized channel responses are the most likely factors. Smaller
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Figure 7.4: Backprojection Image of Three Reflectors (Simulated Data)

contributors are noise in the scene and multiple reflections which are not modeled in

the simulation.

7.3 Compressive Sensing Results

The data collected from the three pipes was taken and reduced down by two

methods:

1. only data from 20 of the 64 geometries was used

2. for each range profile, an effective measurement of 150 samples was used

This process left a total of 20x150 = 3, 000 measurements for the compressive sens-

ing imaging approach. Figure 7.6 shows the simulated result using the compressive

sensing approach described in chapter 6.

49



Figure 7.5: Backprojection Image of Three Reflectors (Measured Data)

The three point reflectors are clearly shown in the image without much else.

Figure 7.7 shows the image using measured data through the compressive sensing

approach.

Once again, the image shows the three reflectors clearly. Strikingly, the positions

of the reflectors are recovered from the same data that produced such a busy image

using the backprojection algorithm.

7.4 Analysis of Results

The results very clearly show that the compressive sensing framework can be used

to create very accurate images with less than 10% of the data used by the backpro-

jection algorithm. Since some improvements could be made to the backprojection

imaging approach (already discussed) the results show that compressive sensing pro-

duce images of at least the same quality as backprojection. Figure 7.8 shows all four
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Figure 7.6: Compressive Sensing Image of Three Reflectors (Simulated Data)

Backprojection Compressive Sensing
Measurements Needed 38,400 3,000
Reconstruction Time ≈ 10 seconds ≈ 10 minutes
Image Quality = ≥
Complexity Always Works Requires CS Framework

Table 7.2: Comparison of Backprojection and Compressive Sensing

result images next to each other. The left column is simulated data while the right

column is measured data. The top row is backprojection while the bottom row is

compressive sensing.

Based on these results, Table 7.4 summarizes the qualities of each imaging ap-

proach.

Based on the comparison, for applications where data acquisition can be traded

for processing time, compressive sensing is a very good option. If processing time is

essential, backprojection or other standard imaging techniques may be more desirable.
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Figure 7.7: Compressive Sensing Image of Three Reflectors (Measured Data)

Many important applications tend to favor less data acquisition. For example,

many radar systems have expensive A/D-D/A equipment. If cheaper equipment could

be purchased, the entire system cost would go down at least linearly. Also, in many

cases, the bottleneck for radar systems is the data transmission to the processing

station. With compressive sensing, there is 10 times less data to transmit which

means that with sufficient processing power, throughput is increased by 10 fold.

Also, in MRI applications, patient time in the machine is the limiting factor for

throughput. The data is processed by computers separate from the imaging device

and can be done in parallel while other patients are being imaged. This means that a

reduction in data collection has a direct impact on throughput of the MRI machine.

These are just two of many examples that are convincing for the benefit of compressive

sensing.

52



Figure 7.8: Compilation of Results
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CHAPTER 8

FUTURE WORK

As in any project, there are items which can be done to extend the work as

presented. Attention is given to two items based on the ease of implementation and

the impact of the modification.

8.1 Channel Balancing with Backprojection

The channel imbalance issue has been discussed several times throughout the

report (see 5.3.2, 7.2). It is attributed to the primary reason for differences between

simulated and measured images using the backprojection algorithm. Since the basic

backprojection algorithm does not use any equalization, the image suffers.

An easy modification to the traditional imaging approach would be to construct

a model from measured data to automatically apply the equalization on all channels.

Similar to section 6.2, the acoustic imaging problem can be described as a linear

system of equations where

ỹ

 =

 A


x̃

 (8.1)
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once again defining ỹ as the measurement vector, A as the system model and x̃ as

the unknown image.

Using the full data set, the system is roughly determined, and an approximation

for x can be found using the adjoint operator of the A matrix.

x ≈ A†y = ATy (8.2)

If the A matrix is constructed in the same way described in section 6.7 except the

full range profiles from 64 geometries are included, the model will fully describe the

behavior due to the actual system.

Then, to recover the image, the transpose of A is simply multiplied by the mea-

surement vector y to recover x. Since this A matrix will be larger than what can

be stored in memory at once, the multiplication will be performed in a piecewise

fashion, reading chunks of the matrix from memory at a time and performing the

multiplication iteratively.

This method should remove the affects of channel and gain imbalances that

plagued the results from the backprojection image. This will also give an important

comparison to compressive sensing that removes all differences between the imag-

ing algorithms. There can be a pure comparison of the image quality based on the

measurement and processing time tradeoff.

8.2 Compressive Sensing using LFM Chirps

As mentioned in section 6.6, there is a major step that still needs to be taken:

come up with an effective measurement that can actually be implemented in hardware
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so the only the data used for the CS model is collected by the system. Right now,

the full data set is collected and a subset is chosen from this set.

Existing radar systems use transmit waveforms called linear frequency modulated

(LFM) chirps. These chirps are of the form

s(t) = <e{ej2π(fc+( t
2T
− 1

2
)fBW )t} (8.3)

where fc is the carrier frequency in Hz, T is the duration of the pulse in seconds and

fBW is the total frequency range that is swept by the chirp in Hz. s(t) sweeps linearly

from fc −1 /2fBW to fc +1 /2fBW over T seconds.

Ongoing research by [7] suggests that a signal composed of several chirps at differ-

ent carrier frequencies with random starting phases could provide enough randomness

to be used directly by a compressive sensing algorithm. Also, the same research sug-

gests that the signal could be intentionally sampled at a lower rate, leading to spatial

aliasing. The design of the waveform would allow for post-processing to recover the

original signal from a severely undersampled signal.

This approach would bring together the work that has been demonstrated here

and use it for a real application. If the idea can be shown to work, then compressive

sensing could be used on existing radar equipment with minimal modifications.
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CHAPTER 9

CONCLUSION

Compressive sensing has been demonstrated to be able to reduce the necessary

data significantly for imaging problems. This work serves as a proof of principle that

the theory can be made to fit the acoustic imaging framework. The relevance of

decreasing data acquisition is important not only to SONAR imaging but to RADAR

and potentially MRI as well.

An acoustic imaging test stand was designed and built in order to provide a

platform for testing. Audio equipment was purchased, installed and tested for use

on the test stand. Also, a transmit waveform was designed to give good resolution

to the imaging results. Then, software was developed to take the data from the test

stand and from simulated experiments and reconstruct an image using backprojecion.

This proved to be an effective way to image reliably and quickly with a given data

set. However, the images were subject to clarity issues. Compressive sensing theory

was explained and the design and approach for acoustic imaging was explored. The

software approach and implementation was detailed and the imaging results were

shared.

The results showed that with the designed compressive sensing framework, im-

ages of equal or greater quality were reconstructed with only 10% of the data used for
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backprojection. However, there is still work to be done to make this method imple-

mentable on a real system. Nevertheless, this work shows that compressive sensing

is a promising technique that offers to greatly decrease the need for data collection

in common imaging systems.
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APPENDIX A

HARDWARE DETAILS AND SPECIFICATIONS

A.1 Bill of Materials

Table A.1 details the cost of all components of the acoustic imaging test stand.

The total cost of the equipment was $735.12.

Sections A.2, A.3 and A.4 include the manufacturer specification sheets for the

A/D-D/A converter, the speakers and the microphones respectively.
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Item Quantity Unit Cost Total Cost

Data Acquisition

TASCAM US-1641 DAQ System 1 $219.99 $219.99

Speakers

Tang Band 25-302SH 1” Shielded
Neodymium Dome Tweeter

4 $20.90 $83.60

Speaker Wire 80 ft. $0.60/ft. $48.00
1/4” mono speaker plug 4 $3.99 $15.96

Microphones

Electret Microphone (Digikey
PN: 102-1732-ND)

16 $1.89 $30.24

27 kΩ Resistor (Digikey PN: 27H-
ND)

16 $0.06 $0.96

2-conductor Wire 320 ft. $0.60/ft. $192.00
XLR Connector (Digikey PN:
SC1003-ND)

16 $4.47 $71.52

Mounting Equipment
3/8”−−16x6” Bolt 16 $1.91 $30.56
3/8” Washer 32 $0.20 $6.40
3/8” Nut 32 $0.20 $6.40
3/8” Lock Nut 16 $0.37 $5.92
L-Bracket 16 $0.49 $7.84
Plywood (4′x4′x1/4”) 1 $7.85 $7.85
Miscellaneous Adhesives 1 $7.88 $7.88

Total: $735.12

Table A.1: Bill of Materials for Acoustic Imaging Test Stand
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A.2 TASCAM A/D-D/A Converter Specifications
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A.3 Tang Band Speaker Specifications
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A.4 CUI Inc. Microphone Specifications
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APPENDIX B

SOURCE CODE

The software involved in the project can be divided into three main categories:

measurement collection, backprojection imaging and compressive sensing imaging.

Figure B.1 shows the flow of information through the various software components

from the formation of the transmit waveform all the way through the generation of

the range profiles.

Figure B.1: Software Flow Diagram: Measurement Collection
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where Tx , Rx and Rfs are scene parameters which describe the locations of the

transmitters, receivers and reflectors respectively. {RPMEASURED} and {RPSIMULATED}

is the set of range profiles produced for either measured or simulated data. Gen-

erateS.m in section B.1 creates the s(t) waveform. MakePNWaveform.m and

SRRC.m are auxilary methods used in the process and are detailed in sections B.2

and B.3 respectively. SimulateEchos.m in section B.4 creates simulated range

profiles using a transmit waveform and an imaging geometry. ProcessEchos.m in

section B.5

Figure B.2 shows the flow of information through the software components in-

volved in backprojection imaging.

Figure B.2: Software Flow Diagram: Backprojection Imaging

where Sd and N are imaging parameters describing the width of the scene in

meters and the number of pixels to include in the final image. Backproject.m in

section B.6 takes the range profiles and the locations of each transmitter and receiver
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and produces an image. ShowImage.m and Show2DImage.m in sections B.7

and B.8 respectively are used to format the final image.

Figure B.3 shows the flow of information through the software components in-

volved in compressive sensing imaging.

Figure B.3: Software Flow Diagram: Compressive Sensing Imaging

where Model Parameters are parameters describing how the effective measure-

ment is formed from the range profiles, A and y are the CS model inputs representing

the system measurement model and the observed measurement. x is a vectorized form

of the image solution. FormEffectiveMeasurement.m in section B.9 is a routine

to transform the range profiles into the effective measurement used for modeling.

MakeCSParameters.m in section B.10 forms the A matrix and the y vector from

two different sets of effective measurements. The spg bpdn routine from the SPGL1
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library [6] produces the image solution and FormatCSImage.m in section B.11

formats the final image.

71



B.1 GenerateS.m

1 %%Written by Taylor Williams
2 %
3 % Code to generate the transmit waveform s(t) used in the acoustic ...

imaging
4 % tests referenced in "SONAR Imaging using Compressive Sensing"
5 %
6 %% Output Parameters
7 % s: A digital waveform at a 96kHz sampling rate representing a ...

waveform
8 % that is band−limited from 2.5kHz−30kHz and was formed from an
9 % original PN sequence of length 2ˆ16−1 as seen in ...

MakePNWaveform.m
10 %%%%%%%%%%%%
11

12 function s = GenerateS()
13

14 %Motivation: We want to create a signal that is bandlimited to ...
roughly

15 %[2.5kHz, 30kHz] since the chosen speakers have low gains below ...
2.4kHz and

16 %the speakers start to alias above 31 kHz. To do this, we design...
a PN

17 %waveform using an upsampling factor of 1 and use a bandpass ...
filter design

18

19 %generate ideal PN Code for transmission
20 [s seq sequence Ns] = MakePNWaveform(1,16,0,96000);
21

22 fs = 96000; %sample rate
23

24 L = 160;
25 fsa = 0.025;
26 fpa = 0.05; %0.05*nyquist = 2.4 kHz
27 fpb = 0.6; %0.6 *nyquist = 28.8 kHz
28 fsb = 0.65;
29 dels = 3e−5; %90dB stopband attentuation
30 delp = 0.8279; %10% passband variation allowed
31

32 %create LS FIR Bandpass Filter
33 F = [0,fsa,fpa,fpb,fsb,1];
34 A = [0,0,1,1,0,0];
35 W = [1/dels,1/delp,1/dels];
36

37 hbp = firls(L,F,A,W);
38
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39 %create bandpass version of s and make sure that correlation is ...
still

40 %sufficient. Since the original signal only has significant ...
frequency

41 %content up to about 24 kHz, the filtering should not affect the ...
signal

42 %very much.
43

44 s = real(ifft(fft(s).*fft(hbp,length(s))));
45

46 end
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B.2 MakePNWaveform.m

1 %%Adapted by Taylor Williams using code from Arthur C. Ludwig
2 % ...

(http://www.silcom.com/˜aludwig/Signal processing/Maximum length sequence
3 % s.htm)
4 %
5 %%Input Parameters:
6 % T: total time for the entire symbol sequence to occur
7 % N: Symbol sequence will be of length 2ˆ(N) − 1. Must be in the ...

range
8 % [3, 18].
9 % alpha: SRRC pulse shaping parameter. See SRRC.m

10 % fs: sampling rate of signal
11 %
12 %%Output Parameters:
13 % s: final waveform at fs sampling rate. Padded with zeros so that...

the
14 % signal has a length of a power of two for FFT speed−up.
15 %
16 % seq: upsampled version of the PN code by U. Can be used to plot...

s vs.
17 % seq and see exactly where the symbols match up.
18 %
19 % sequence: Maximum Length Sequence (no sampling rate). Just a ...

series
20 % of symbols in {−1,1}.
21 %
22 % Ns: Upsampling factor in order to meet the required time. Integer
23 % value >= 1.
24 function [s seq sequence Ns] = MakePNWaveform(T,N,alpha,fs)
25 len = T*fs;
26

27

28 %%generate Maximum Length Sequence of length 255 (2ˆ8−1)
29 %code section from
30 %http://www.silcom.com/˜aludwig/Signal processing/Maximum length sequences.htm
31

32 %Copyright, Arthur C. Ludwig, 2001.
33 if N == 18; taps=[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1]; end;
34 if N == 17; taps=[0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1]; end;
35 if N == 16; taps=[0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1]; end;
36 if N == 15; taps=[0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]; end;
37 if N == 14; taps=[0 0 0 1 0 0 0 1 0 0 0 0 1 1]; end;
38 if N == 13; taps=[0 0 0 0 0 0 0 0 1 1 0 1 1]; end;
39 if N == 12; taps=[0 0 0 0 0 1 0 1 0 0 1 1]; end;
40 if N == 11; taps=[0 0 0 0 0 0 0 0 1 0 1]; end;
41 if N == 10; taps=[0 0 0 0 0 0 1 0 0 1]; end;
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42 if N == 9; taps=[0 0 0 0 1 0 0 0 1]; end;
43 if N == 8; taps=[0 0 0 1 1 1 0 1]; end;
44 if N == 7; taps=[0 0 0 1 0 0 1]; end;
45 if N == 6; taps=[0 0 0 0 1 1]; end;
46 if N == 5; taps=[0 0 1 0 1]; end;
47 if N == 4; taps=[0 0 1 1]; end;
48 if N == 3; taps=[0 1 1]; end;
49

50

51 M = 2ˆN−1;
52 m = ones(1,N);
53 regout = zeros(1,M);
54 for ind = 1:M
55 buf = mod(sum(taps.*m),2);
56 m(2:N) = m(1:N−1);
57 m(1)=buf;
58 regout(ind) = m(N);
59 end
60 comp = ˜ regout;
61 sequence = regout − comp;
62

63 %%Create SRRC pulse for shaping
64 U = fix(len/(2ˆN−1)); %upsample factor
65 Ns = U;
66 g = SRRC(4,alpha,U);
67 g = g./max(g); %normalize to 1
68

69 x = upsample(sequence,U);
70 seq = [zeros(1,4*U) x];
71

72

73 %% shape pulse and create s(t) that is length of power of 2
74 s = conv(x,g);
75

76 s = [s zeros(1,2ˆ(ceil(log2(len)))−length(s))];
77

78 end
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B.3 SRRC.m

1 %Written by Phil Schniter
2 %
3 % SRRC Creat an oversampled square−root raised cosine pulse
4 % SRRC(N, alf, P) creates an oversampled SRRC pulse, where
5 % N is one half the length of srrc pulse in symbol durations,
6 % alf is the rolloff factor (between 0 and 1; alf=0 gives a sinc ...

pulse),
7 % P is the oversampling factor (a positive integer).
8 % SRRC(N, alf, P, t off) works the same way, but offsets the pulse
9 % center by t off fractional samples.

10

11 function g = SRRC(N, alf, P, t off);
12

13 if nargin==3, t off=0; end; % if unspecified, offset is 0
14 k = −N*P+1e−8+t off:N*P+1e−8+t off; % sampling indices as multiples ...

of T/P
15 if alf==0, alf=1e−8; end; % numerical problems if alf=0
16 g = ...

4*alf/sqrt(P)*(cos((1+alf)*pi*k/P)+sin((1−alf)*pi*k/P)./(4*alf*k/P))./...
17 (pi*(1−16*(alf*k/P).ˆ2));

76



B.4 SimulateEchos.m

1 %%Written by Taylor Williams (Last Edited: 3/23/2011)
2 %
3 % Code to Simulate ideal data from a provided geometry of transmiters,
4 % receivers and reflectors.
5 %
6 %% Input Parameters
7 % All Distances in Meters
8 % reflectors: row vector where each entry is a complex number
9 % corresponding to the location of each point ...

reflector
10 % in a 2D plane (0,0) is the center of the scene
11 % Tx: row vector where each entry is a complex number ...

corresponding to
12 % the location of each transmitter on a 2D plane
13 % Rx: row vector where each entry is a complex number ...

corresponding to
14 % the location of each receiver on a 2D plane
15 %
16 % s: transmit waveform to be convolved to generate r
17 %
18 % fs: sampling frequency (Hz)
19 %
20 %% Output Parameters
21 % data: cell array where data{x,y} is the signal received by the yth
22 % receiver from the xth transmitter. Ideal impulse response ...

assumed for
23 % every point reflector
24 %
25 % cdata: cell array where cdata{x,y} is the signal data{x,y} ...

correlated
26 % against s and shifted so that the peak of the correlation is ...

at the
27 % same location as the original impulse in data{x,y}
28 %%%%%%%%%%%%
29

30 function [data cdata]=SimulateEchos(Rfs, Tx, Rx, s, fs)
31 c = 343; %speed of sound, assumed constant
32 nTx = length(Tx); nRx = length(Rx); nRfs = length(Rfs);
33

34 %calculate the distance between each reflector and Receiver, each
35 %reflector and transmitter respectively
36 for r = 1:length(Rfs) dTxR(r,:) = abs(Tx−Rfs(r)); dRxR(r,:) = ...

abs(Rx−Rfs(r)); end
37

38 N=nTx*nRx;
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39 %Start by creating data{tx,rx} which contains an ideal impulse ...
response

40 %at the location of each reflector. Data is positioned so that t=0
41 %corresponds to the speaker location.
42 fprintf('Simulating Data...',N);
43 for tx = 1:nTx
44 fprintf('.');
45 for rx = 1:nRx
46 %calculate the path lengths for all reflectors
47 d = (dTxR(:,tx)+dRxR(:,rx))';
48 %caclulate the appropriate index corresponding to those ...

lengths
49 n = fix(d./c.*fs);
50 %intitialize the output data array to all zeros
51 data{tx,rx} = zeros(1,max(n));
52 %add 1 for every reflector position
53 for rfs = 1:nRfs
54 data{tx,rx}(n(rfs)) = data{tx,rx}(n(rfs)) + 1;
55 end
56 end
57 end
58 fprintf(' Complete.\n');
59

60 %%Next, pulse shape with the provided waveform correlated against ...
itself

61 %Adjust the result so that the peak of the correlation function is ...
at the

62 %same place as the ideal response
63 fprintf('Correlating Data...');
64

65 %generate pulse shape (s(t)*s(−t)) using ffts
66 d = real(fftshift(ifft(fft(s).*fft(fliplr(s)))));
67

68 %shape each data{tx,rx} to make the cdata{tx,rx} vector
69 for tx = 1:nTx
70 fprintf('.');
71 for rx = 1:nRx
72 %first, extend data by length(d)/2 so that we can do
73 %convolution using ffts and not have any difference in
74 %result
75 zpaddata = [data{tx,rx} zeros(1,length(d)/2)];
76 %pulse shape with d
77 cd = real(ifft(fft(zpaddata,length(d)).*fft(d)));
78 %Shift signal so that peaks line up with ideal response
79 cdata{tx,rx} = cd(length(cd)/2:length(cd));
80 %truncate arbitrarily to twice the original length
81 cdata{tx,rx} = cdata{tx,rx}(1:(2*length(data{tx,rx})));
82 end
83 end
84 fprintf(' Complete.\n');
85 end
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B.5 ProcessEchos.m

1 %%Written by Taylor Williams
2 %
3 % Process to take measured data for the background and the scene, match
4 % filter and perform background subtraction.
5 %
6 %%Input Parameters
7 % bdata − a NxM cell array where N is the number of transmitters ...

and M is
8 % the number of receivers. background recording with no reflectors ...

in the
9 % scene.

10 %
11 % sdata − an NxM cell array where N is the number of transmitters ...

and M
12 % is the number of receivers. recording with reflectors in the scene.
13 %
14 % s − transmit waveform at 96kHz
15 %
16 % dmax − maximum range for echoes. Used to determine time gating.
17 %
18 % ndelay − hardware delay in samples at 96kHz. Is applied to each ...

data
19 % set
20 %
21 %%Output Parameters
22 %
23 % data − an NxM cell array where N is the number of transmitters ...

and M is
24 % the number of receivers. Each signal in data is the result of
25 % subtracting the match filtered background from the match filtered
26 % scene and adjusting for all delays.
27 function data = ProcessEchos(bdata,sdata,s,dmax,ndelay)
28 {
29 [nTx nRx] = size(bdata);
30

31 for tx = 1:nTx
32 for rx = 1:nRx
33 %correlate background and scene data
34 cback{tx,rx} = processData(bdata{tx,rx}',s,0,dmax/343);
35 cdata{tx,rx} = processData(sdata{tx,rx}',s,0,dmax/343);
36 %perform background subtraction
37 data{tx,rx} = cdata{tx,rx}−cback{tx,rx};
38 %account for hardware delays
39 data{tx,rx} = data{tx,rx}(ndelay:length(data{tx,rx}));
40 end
41 end
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42 }
43

44 %%cr = processData(r,s,Tstart,Tmax)
45 % takes a recorded waveform r and match filters against s, and ...

applies a
46 % shift to guarantee that the peak from the correlation occurs at the
47 % beginning of the echo.
48 % Tstart is the experiment time delay between the start of ...

recording and
49 % the start of transmission. Typically 0.
50 % Tmax is a time gating parameter. The resulting match filtered ...

result
51 % will be truncated in time assuming a sampling rate of 96000 Hz.
52 function cr = processData(r,s,Tstart,Tmax)
53 fs = 96000;
54 c = 343;
55

56 M = length(s);
57 N = length(r);
58

59 nstart = fix(Tstart*fs);
60 nmax = fix(Tmax*fs);
61

62 if (length(r) < length(s)) r = [r zeros(1,length(s)−length(r))]; end
63

64 %correlate and shift so that the peak occurs at the first sample ...
of the

65 %original signal
66 cr = real(ifft(fft(r,N+M−1).*fft(fliplr(s),N+M−1)));
67 cr = cr(M:length(cr));
68

69 %ignore the first Tstart seconds − given delay from start of ...
record to

70 %time of transmit
71 cr = cr((nstart+1):length(cr));
72

73 %gate the signal in time − limit to Tmax after the time when the ...
signal

74 %starts
75 cr = cr(1:nmax);
76 end
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B.6 Backproject.m

1 %%Written by Taylor Williams 3/23/2011
2 %
3 % Code that takes correlated time−domain recordings and produces an ...

image
4 % through backprojection
5 %
6 % Input Parameters:
7 % cdata: cell structure where cdata{tx,rx} is the recording from the
8 % specified Tx and Rx. t=0 when the sound leaves the speaker.
9 %

10 % Tx/Rx: vector telling the positions of each transmitter and ...
receiver

11 % in the x−y plane using complex numbers (x+iy) in meters
12 %
13 % L: Width of the scene to image. Produced image will span from
14 % [−L/2, L/2] in both x and y directions
15 %
16 % N: Width in pixels of image to produce. Function produces an NxN
17 % image.
18 %
19 %
20 % Output Parameters:
21 % pixelgrid: NxN matrix where each entry is the location in the x−y
22 % plane of the center of that pixel.
23 %
24 % image: NxN matrix with the result of the backprojection in the ...

scene.
25 % magnitudes normalized to be from 0 to 1.
26

27 function [pixelgrid image] = Backproject(cdata, Tx, Rx, L, N)
28 %Static Variables − speed of sound and sampling rate
29 c = 343;
30 fs = 96000;
31

32 nTx = length(Tx); nRx = length(Rx);
33

34 %Resample provided data vectors so that there is one point per pixel
35 % either interpolating or decimating by a rational factor
36

37 R = (c/fs)/(L/N); %resampling factor (provided delta x / image ...
delta x)

38

39 %use interp1 to create a new interpolated data vector to fit N ...
pixels

40 % This is alot faster to do ahead of time all in one swoop
41 fprintf('Resampling Data...');
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42 for tx = 1:nTx
43 for rx = 1:nRx
44 len = length(cdata{tx,rx});
45 cdata{tx,rx} = ...

interp1(1:len,cdata{tx,rx},linspace(1,len,fix(len*R)));
46 end
47 end
48 fprintf(' Complete.\n');
49

50 %make sure N is odd (number of pixels in final image)
51 %guarantees a (0,0) pixel
52 if (mod(N,2)==0) N = N−1; end
53

54 %create 2D NxN vector that contains the positions of the center ...
of each

55 %pixel (using complex numbers for x,y coordinates)
56 pixpos = ...

(linspace(−L/2,L/2,N)'*ones(1,N))'+linspace(−L/2*i,L/2*i,N)'*ones(1,N);
57

58 %initialize image to zeros
59 image = zeros(N,N);
60

61 %Looping through each pixel in the final image
62 fprintf('Constructing Image: ');
63 tic;
64 mark = 0;
65 for x=1:N
66 %display status
67 t=toc;
68 if (floor(t)>mark) fprintf('%d%%, ',ceil(x/N*100)); mark = ...

mark + 1; end
69 for y=1:N
70 %examining the contribution from each geometry
71 for tx=1:nTx
72 for rx=1:nRx
73 %calculate the path distance from the chosen ...

Tx/Rx to
74 %the pixel being examined
75 d = abs(Tx(tx)−pixpos(x,y))+abs(Rx(rx)−pixpos(x,y));
76 n = fix(R*d/c*fs); %determine the index for the ...

distance using the resampling factor
77 %add to the pixel the value from the range profile
78 if (n <= length(cdata{tx,rx})) image(x,y) = ...

image(x,y) + cdata{tx,rx}(n); end
79 end
80 end
81 end
82 end
83 fprintf(' Completed.\n');
84

85 %normalize image

82



86 image = image./max(max(image));
87

88 pixelgrid = pixpos;
89

90 end
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B.7 ShowImage.m

1 %Jason T. Parker
2

3 function ShowImage(result,bounds,spacing,f hand,title string,cscale)
4

5 if bounds(5) == bounds(6) %2−D image in X−Y plane
6 Show2DImage(result,bounds,f hand,title string,cscale,'X (m)','Y ...

(m)');
7 elseif bounds(1) == bounds(2) %2−D image in Y−Z plane
8

9 %Fix the bounds
10 bounds = bounds(1,3:end);
11 Show2DImage(squeeze(result).',bounds,f hand,title string,cscale,'Y...

(m)','Z (m)');
12

13

14 elseif bounds(3) == bounds(4) %2−D image in X−Z plane
15

16 %Fix the bounds
17 bounds = [bounds(1,1:2) bounds(1,5:6)];
18 Show2DImage(squeeze(result).',bounds,f hand,title string,cscale,'X...

(m)','Z (m)');
19

20 else
21

22 figure(f hand)
23 clf
24

25 %Generate the coordinate vectors
26 x = bounds(1):spacing:bounds(2);
27 y = bounds(3):spacing:bounds(4);
28 z = bounds(5):spacing:bounds(6);
29

30 % %Call plotting code option 1
31 % contours = linspace(cscale(1),cscale(2),20);
32 % ...

plot3 patch(f hand,x,y,z,20*log10(abs(result/max(abs(result(:))))),contours,linspace(.1,1,20));
33

34 %Plotting code, option 2
35 isosurface(x,y,z,20*log10(abs(result)/max(abs(result(:)))),cscale(1));
36 axis(bounds);
37 title(title string);
38 end
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B.8 Show2DImage.m

1 %Jason T. Parker
2

3 function ...
Show2DImage(data,bounds,f hand,title string,cscale,x string,y string)

4 %This function plots a normalized image from 2d data produced by ...
pcmf image

5

6 %data is a 2d matrix of raw (i.e. complex) pixel values
7

8 %bounds is the 1 by 6 vector of axis limits x,y,z ordering
9

10 %fignum is the desired figure number
11

12 %title string is the title string of the figure
13

14 %cscale is the desired color scale
15

16 if nargin < 6
17 x string = 'X (m)';
18 y string = 'Y (m)';
19 end
20

21 figure(f hand)
22 clf
23 imagesc(bounds(1,1:2),bounds(1,3:4),20*log10(abs(data/max(abs(data(:))))),cscale);
24 %imagesc(bounds(1,1:2),bounds(1,3:4),20*log10(abs(data)),cscale);
25 set(gca,'YDir','normal','fontsize',11,'fontweight','bold');
26 grid off
27 axis square
28 xlabel(x string,'fontsize',12,'fontweight','bold');
29 ylabel(y string,'fontsize',12,'fontweight','bold');
30 title(title string,'fontsize',12,'fontweight','bold');
31 colormap('jet');
32 colorbar
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B.9 FormEffectiveMeasurement.m

1 %%Written by Taylor Williams
2 %
3 %quick function to take an original measurement y0 (Nx1) and create ...

an effective
4 %measurement y (Nx1) by putting y0 through the provided linear ...

transformation TM
5 %and keeping only the samples in keepsamples
6 %
7 %TM must be NxN where N is the length of y0
8 %
9 %keepsamples must contain only integer values in [1,N]

10

11 function y = FormEffectiveMeasurement(y0, TM, keepsamples)
12 y0 = TM*y0;
13 y = y0(keepsamples);
14 end
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B.10 MakeCSParameters.m

1 %%Written by Taylor Williams
2 %
3 %A function that constructs an A matrix and a y vector from two separate
4 %data sets. Input parameters specify exactly how to do this.
5

6 %%Input Parameters
7 % Let T = number of transmitters in full data set
8 % R = number of receivers in full data set
9 %

10 % adata: a TxR cell array containing range profiles from a centered...
point

11 % reflector. Data used to construct the a matrix
12 %
13 % ydata: a TxR cell array containing range profiles from the unknown
14 % scene. used to construct the y measurement vector.
15 %
16 % dataparams.G − number of data sets to use (must be <= T*R)
17 % dataparams.g − a 2xG matrix where g(:,i) contains [tx rx]' where...

tx is
18 % the transmitter number (from 1 to T) and rx is the receiver ...

number
19 % (from 1 to R). This matrix describes exactly what data to use.
20 % dataparams.gpos − a 2xG matrix where gpos(:,i)
21 % contains [ptx prx]' where ptx and prx are complex numbers ...

with the
22 % location of the transmitter or receiver in the 2D plane ...

(x+iy) in
23 % meters.
24 % dataparams.nmax − maximum cutoff length for range profiles. (600 ...

used
25 % throughout thesis research.)
26 % dataparams.TM − a transformation matrix used to make the effective
27 % measurement. Must be nmax by nmax. (randn(600,600) used ...

throughout
28 % research)
29 % dataparams.keepsamples − a 1xG cell array where each entry is a row
30 % vector of the same length (<nmax) listing the integer valued ...

entries of
31 % each effective measurement to keep. (for research, these were
32 % pre−determined randomly as 150 samples out of the 600 for each
33 % geometry) − All cell elements must be vectors of the same ...

length!!
34 %
35 % imageparameters.L − length in meters of the unknown scene. ...

Assumed to
36 % be square (LxL meters)
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37 % imageparameters.N − number of pixels along one edge of the unknown
38 % scene. Final modeled image is NxN pixels square.
39 %
40 %%Output Parameters
41 % A − MxN matrix (M = (number of geometries)(length of effective
42 % measurement) and N = (imageparameters.N)ˆ2
43 % Each column of A is the stacked ideal measurement of all G
44 % geometries based on the adata provided. See below for more
45 % algorithmic details.
46 %
47 % y − an Mx1 vector representing the effective measurement of the ...

imaged
48 % scene.
49 %
50

51

52 function [A y] MakeCSParameters(adata, ydata, dataparams)
53 fs = 96000;
54 c = 343;
55

56 L = imageparams.L; %square image dimension (meters) centered at ...
(0,0)

57 N = imageparams.N; %square image pixels (NxN image)
58

59 G = dataparams.G;
60 gpos = dataparams.gpos;
61 nmax = dataparams.nmax;
62

63 keepsamples = dataparams.keepsamples;
64 T = dataparams.TM;
65

66 %length of each effective measurement
67 nEff = length(dataparams.keepsamples{1});
68

69

70 %make cell vector for just the used data (maps from {tx,rx} to {g})
71 for k = 1:dataparams.G
72 Adata{k} = adata.data{dataparams.g(k,1),dataparams.g(k,2)};
73 if (length(Adata{k})<dataparams.nmax) Adata{k} = [Adata{k} ...

zeros(1,length(dataparams.nmax−Adata{k}))]; end
74 Ydata{k} = ydata.data{dataparams.g(k,1),dataparams.g(k,2)};
75 if (length(Ydata{k})<dataparams.nmax) Ydata{k} = [Ydata{k} ...

zeros(1,length(dataparams.nmax−Ydata{k}))]; end
76 end
77

78 %%Form the A matrix
79 %%caculate the offset required for each component of the A matrix
80 %create a 2D matrix with the positions in meters of each pixel
81 pixpos = ...

(linspace(−L/2,L/2,N)'*ones(1,N))'+linspace(−L/2*i,L/2*i,N)'*ones(1,N);
82
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83 centerDistance = abs(gpos(:,1))+abs(gpos(:,2));
84 for g = 1:G
85 xydelay{g} = ...

fs/c*((abs(gpos(g,1)−pixpos)+abs(pixpos−gpos(g,2)))−centerDistance(g));
86 pixvec = xydelay{g}(:,1);
87 for n = 2:N
88 pixvec = [pixvec; xydelay{g}(:,n)]; end
89 delay{g} = pixvec;
90 end
91

92

93 %%Apply Time shift in frequency domain and construct matrix using
94 %%sample points
95

96 A = zeros(G*nEff,Nˆ2);
97

98 for g = 1:G
99 FreqData{g} = fft(Adata{g}(1:nmax),nmax);

100 end
101

102 indexes = (nEff*(0:G))+1;
103

104 df = 1/(nmax*1/fs);
105 f = df*(1:nmax);
106

107 for pixel=1:Nˆ2
108 if (mod(pixel,fix(Nˆ2/100))==0) fprintf('%d ',pixel); end
109 for g = 1:G
110 tau = round(delay{g}(pixel))/fs;
111 e = exp(j*2*pi.*f*−tau);
112 %apply shift in time in freq domain
113 FreqD = e.*FreqData{g};
114 %sample based on input parameters from user
115 datapoints = T*real(ifft(FreqD))';
116 datapoints = datapoints(round(keepsamples{g}));
117 %normalize measurement
118 datapoints = datapoints./max(datapoints);
119 %place into the empty A matrix
120 A(indexes(g):(indexes(g+1)−1),pixel) = datapoints;
121 end
122 end
123

124

125 %% create y vector of measurements
126 indexes = (nEff*(0:dataparams.G))+1;
127 for g=1:dataparams.G
128 datapoints = (dataparams.TM*Ydata{g}(1:dataparams.nmax)');
129 datapoints = datapoints(round(dataparams.keepsamples{g}));
130 datapoints = datapoints./max(datapoints);
131 y(indexes(g):(indexes(g+1)−1),1) = datapoints;
132 end

89



133

134 end
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B.11 FormatCSImage.m

1 %%Written by Taylor Williams
2 %
3 %simple method to take a vectorized image x (containing N columns of N
4 %pixels stacked consecutively) back into an NxN image
5

6 function image = FormatCSImage(x,N)
7 indices = ((0:N)*N)+1;
8 for col = 1:N
9 image(1:N,col) = flipud(x(indices(col):(indices(col+1)−1)));

10 end
11 end
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