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ABSTRACT: Multivariate analyses of dynamic correlations between continuous 

acoustic properties (intensity and spectral flatness) and real-time listener perceptions of 

change and expressed affect (arousal and valence) in music are developed, by an 

extensive application of autoregressive Time Series Analysis (TSA). TSA offers a 

large suite of techniques for modeling autocorrelated time series, such as constitute 

both music’s acoustic properties and its perceptual impacts. A logical analysis 

sequence from autoregressive integrated moving average regression with exogenous 

variables (ARIMAX), to vector autoregression (VAR) is established. Information 

criteria discriminate amongst models, and Granger Causality indicates whether a 

correlation might be a causal one. A 3 min electroacoustic extract from Wishart’s Red 

Bird is studied. It contains digitally generated and transformed sounds, and animate 

sounds, and our approach also permits an analysis of their impulse action on the 

temporal evolution and the variance in the perceptual time series. Intensity influences 

perceptions of change and expressed arousal substantially. Spectral flatness influences 

valence, while animate sounds influence the valence response and its variance. This 

TSA approach is applicable to a wide range of questions concerning acoustic-

perceptual relationships in music. 
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HOW do acoustical properties of musical works influence their perception? This question has attracted 

research with a focus on acoustic/perceptual features that include: sound intensity/loudness (Chapin, Large, 

Jantzen, Kelso, & Steinberg, 2008; Olsen, Stevens, & Tardieu, 2007); frequency/pitch and tonality 

(Kessler, Hansen, & Shepard, 1984; Windsor, 1997); sound duration/meter and tempo (Boltz, 1998; 

Chapin, et al., 2008; Quinn & Watt, 2006; Todd, Cousins, & Lee, 2007; Vuust, Ostergaard, Pallesen, 

Bailey, & Roepstorff, 2009); and spectrum/timbre (Bailes & Dean, 2007; Caclin, McAdams, Smith, & 

Winsberg, 2005; Gordon & Grey, 1978), as these relate to perceived structure and emotional response 

(Bailes & Dean, 2009; Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005; Dubnov, McAdams, & 

Reynolds, 2006; Gabrielsson & Lindstrom, 2001; Leman, Vermeulen, De Voogdt, Moelants, & Lesaffre, 

2005; Schubert, 2004; Sloboda, 1991; Sloboda & Lehmann, 2001). An issue in this work is the inadequacy 

of treating music as a static entity, since perception is determined by the temporal organization of these 

acoustic properties (Brittin & Duke, 1997; Deliège, Mélen, Stammers, & Cross, 1996; Krumhansl & 

Kessler, 1982; Lalitte & Bigand, 2006; McAdams, Vines, Vieillard, Smith, & Reynolds, 2004; Schubert, 

2004; Sloboda & Lehmann, 2001). This paper will detail an analytical method allowing for just such a 

dynamic examination of the relationship between acoustical properties of a composition with real-time 

listener perceptions of its structure and its affective content.  

Previous studies of listeners’ real-time perceptions of affect in music have attempted to map 

response through time to acoustic properties of the piece (e.g. Schubert, 2004). Missing are substantial 

attempts to assess which acoustic properties also drive listeners’ perceptions of the structure of the same 
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music. Structure in this instance need not be a music-theoretic analysis of large-scale form (such as sonata 

form in classical music), but refers to the low-level assessment by a listener of change and continuity in the 

music. While either the relationship of acoustic properties to perceived affect or the relationship of acoustic 

properties to perceived structure would be informative in its own right, an amalgamation of both provides a 

more complete psychological account of ways in which acoustic properties implicitly and explicitly shape 

music perception. For instance, it may be that listener ratings of affective change more closely align with 

their ratings of perceived structure than with acoustic measurements of the music (see Bailes & Dean, 

2009). This might most obviously be the case in tonal compositions where it is difficult to capture the 

hierarchical tonal relations through acoustic measures alone. Conversely, musical forms that do not rely on 

hierarchical structures such as tonality or meter might exhibit quite a close relationship between acoustic 

properties of the work, listener perceptions of structure (change in sound), and listener perceptions of 

affect. Electroacoustic music is one such form, and the subject of the current paper.  

 The electroacoustic composition Red Bird, by Trevor Wishart (1977), was selected for study (see 

T. Wishart, 1985; Trevor Wishart, 2009 for discussion of his compositional techniques) to demonstrate the 

widest possible utility of the analytical approach, both to instrumental and electroacoustic music, familiar 

and unfamiliar. The piece does not comprise distinct ‘note’ events like those in a piece of classical piano 

music. Rather, the work is based on transformations in timbre, texture, and loudness throughout its 45 min 

duration and it includes identifiable sounds from animate objects including birds, which also undergo 

transformation. The piece can be viewed as highly symbolic, and in diverse ways. Given that almost all 

research into the acoustic correlates of perceived emotion in music uses Western tonal music, an original 

motivation for this paper was to examine how listeners perceive the emotion expressed by non-tonal, 

alternative musical compositions (Bailes & Dean, 2009). We particularly chose a section of the piece 

which concentrates the animate (bird and other) sounds in juxtaposition with more widespread 

electroacoustic timbral gestures, such that we could illustrate the power of TSA to analyze the impact of 

specific (sometimes unusual or unique) timbral features, as well as universal ones such as intensity and 

spectral features. Although no note structure is present, other sound features, which have been suggested to 

relate well to the perception of affect in most music, are fundamental to this and much other electroacoustic 

music from a tradition that now spans more than 50 years (Dean, 2009). For instance, physical sound 

intensity can be measured, and past work points to a link between its perceptual counterpart of loudness 

and the real-time perception of tension (Krumhansl, 1996) and arousal (Schubert, 2001).  

Past research also points to timbre as an influence on the perception of affect (Bailes & Dean, 

2009; Leman, et al., 2005) but this has been investigated much less. Spectral flatness, which quantifies the 

distribution of partials in the signal, is a ‘global’ parameter of timbre: it is influenced by every spectral 

component, symmetric or otherwise. It is measured as geometric mean/arithmetic mean of the power 

spectrum. High values indicate noise, and low values suggest peaks in the spectrum (an infinitely narrow 

peak has a spectral flatness of minus infinity). It is one of the four ‘basic spectral audio Descriptors’ used 

in the MPEG-7 standard (for an overview: ("MPEG-7 Overview," 2004)). There it is termed the 

‘audioSpectrumFlatness Descriptor’ and it is noted that low values are informative as they can ‘signal the 

presence of tonal components’. Unlike spectral centroid, another key summary MPEG-7 Descriptor, which 

is an indicator of the central frequency range of the spectrum, spectral flatness is influenced even by 

symmetrical changes in the power spectrum. Our purpose here was to establish a method that can be 

applied both to electroacoustic music, which is often primarily timbral, and often without regular rhythmic 

or pitch structures, and equally to tonal Western music and to music of other cultures which emphasizes 

hierarchical pitch structures (Krumhansl, 1990). As an initial primary measure of frequency spectrum, 

spectral flatness was therefore our approach of choice. Measures specific to any individual music style 

could be added or substituted in subsequent work (e.g. equal tempered pitch measures for Western classical 

music). Spectral flatness has the added advantage that as a ‘global’ parameter of timbre, it is directly 

related mathematically to one measure of the information content and information rate of a sonic stream 

(Dubnov, 2006). Thus we use measurements of spectral flatness as our parameter of timbre, so that timbre 

can be studied from other specific points of view thereafter.  

  In addition to intensity and spectral flatness variations, Red Bird features many sounds 

reminiscent of everyday, environmental sounds. Indeed, the piece can be construed as highly narrative, 

with a combination of animate (human and other) and inanimate sound sources evoked. Animate sounds 

can be readily interpreted as possessing agency (as discussed previously by Maus (1997) with reference to 

music). So it also makes sense that sounds perceived as animate are associated with greater affective 

expression than inanimate sound sources (Bailes & Dean, 2009; Bradley & Lang, 2000). This study will 
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also examine whether the alternation of animate and inanimate sounds is a significant determinant of 

listener perceptions of structure and affect. In order to compare the structure of animate agency with 

physical measures of intensity and spectral flatness, and listener perceptions of structure and affect through 

time, an analytical method able to handle multiple time series is needed. This paper will develop and apply 

such a method based on TSA in detail, using Red Bird as a test case. 

The techniques of autoregressive Time Series Analysis constitute a large and highly developed 

battery of methods specific to data which are not independent, and thus contravene the assumptions of 

most statistical approaches. Such data are often highly autocorrelated, such as series of real-time data, so 

called ‘time series’ (Enders, 2004; Hamilton, 1994). Few analyses of real-time data about perception of 

sonic features or affective expression in music have applied these techniques (e.g. Brown, 1993; Vos, Van 

Dijk, & Schomaker, 1994, in both cases concerned with perception of meter in music) and they are not 

used in most of the interesting studies of such musical time series such as those by De Vries (1991), 

Madsen and Fredrickson (1993), Krumhansl (1996) and Dubnov et al. (2006). It is important to realize that 

if two quite independent time series datasets are each highly autocorrelated, they may well seem to be 

significantly cross-correlated. Thus to avoid identifying spurious relationships between series it is 

necessary to create ‘stationarity’, and deal with other issues of autocorrelation. What is required is so-

called ‘Weak Stationarity’, which means in essence removing trends in the data, such that mean, variance 

and covariance are all ‘unaffected by a change of time origin’ (Enders, 2004, p. 53), i.e., they are constant 

within appropriate statistical limits. Throughout the rest of this paper we simply use ‘stationary’ to refer to 

such Weak Stationarity. Stationary series may still be autocorrelated. But a key criterion of subsequent 

satisfactory models of an individual series or of models for relating multiple stationary series is that the 

residual errors (the time series constituting each successive residue left when the model estimate of a point 

is subtracted from the corresponding data point) are white noise, and thus no longer autocorrelated. It is 

only when this criterion is fulfilled that many of the statistical tests of significance which are routinely 

applied are meaningful. In addition, if there were still autocorrelation in the residuals from the model, this 

would represent unmodelled information. Note that there are other techniques applicable to the analysis of 

time series, both in the time and spectral domains, but in this paper we will refer specifically to 

autoregressive Time Series Analysis simply as TSA. There is some further consideration of other 

techniques in the Discussion section of this paper.  

Amongst the few significant earlier applications of some aspects of TSA to this area is the 

pioneering work of Schubert (Schubert, 1999, 2001, 2004; Schubert & Dunsmuir, 1999), which indicated 

that with several pieces of classical music, acoustic intensity might be a major influence on perceived 

arousal. These studies have used a common feature of reliable TSA, the process of differencing, which 

means calculating the difference between successive values, thus creating a new series with one fewer 

point than the original. A differenced linear time series without error has a constant value, and differencing 

a time series which has a trend and substantial variability produces short runs of positive then negative 

values. As a result, such differenced series are commonly stationary even if the original series is not, and 

Schubert undertook some tests to establish the quality of his differenced series. There are alternative ways 

of achieving stationarity, but they were not required in the present work. In the present paper we apply a 

complete range of quality tests, and in particular, tests of stationarity prior to modeling. After differencing, 

Schubert then conducted simple forms of multivariate analysis by regressive/autoregressive techniques. We 

extend this approach considerably, using a wide range of the available plethora of techniques, and 

developing a logical and reproducible sequence for analysis. Here we develop the method and apply it to 

one electroacoustic work – in a detailed case study. Our choice of electroacoustic music complements the 

earlier work on Western classical music, and our approach is equally applicable to other forms of music. 

 

 

MATERIALS  

 
This paper focuses on a 3 min. sound extract of electroacoustic music by Trevor Wishart, from his Red 

Bird (1977). The section used is from c. 22’30 to 25’46” of this 45 min piece, and is taken from UbuWeb 

http:// www.ubu.com/sound/wishart.html (44.1kHz, 16bit, aiff, stereo). The piece was originally made by 

analogue techniques.  
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METHODS 

 

Measuring Acoustic Intensity and Spectral Flatness 

 
Acoustic intensity is measured across 500 ms windows, corresponding to those chosen for the subsequent 

perceptual analyses. Intensity is measured with respect to the frequency range 20-22050 Hz, and 

corresponds to Sound Pressure Level (SPL) in unweighted dB. Spectral flatness is measured as Wiener 

Entropy, using a slightly modified version of a script by Gabriel J.L.Beckers (2004; available online). 

Wiener Entropy is the ratio of a power spectrum’s geometric mean and its arithmetic mean, as described 

above, but expressed on a log scale, which ranges from 0 (where the power spectrum is broad and 

relatively flat: ‘noisy’) to minus infinity (where the power spectrum is infinitely narrow: ‘pure’). Frames of 

500 ms are again used, with hop size 62.5 ms and a Gaussian window, and with the frequency range 0-

22050 Hz. Frequency bins are c. 0.005 Hz. Note that changes in all regions of the frequency spectrum 

impact on this parameter.  

 

Assessing Possible Statistical Cross-correlation between Spectral Flatness and Intensity 
 

If intensity and spectral flatness are to be separable potential acoustic correlates of perceptual responses to 

a particular piece, then they should not themselves be closely collinear in that piece. A sound may certainly 

have its intensity adjusted without change to its spectral flatness, and vice versa. But when music develops 

acoustic intensity by increasing the number of individual pitches sounding at a particular moment (for 

example, the number of notes played simultaneously on an instrument such as the piano) or by increasing 

the spectral range within its timbres (in electroacoustic music), then a positive correlation between intensity 

and spectral flatness could result. This is assessed by determining the cross-correlation between the two 

time series. As mentioned already, cross-correlation between two time series that are themselves 

autocorrelated may be misleading. This issue is avoided by the process of ‘pre-whitening’: a standard TSA 

technique, a classic example of which is described in detail in Chapter 11 of Box et al. (1994). Pre-

whitening comprises establishing a purely autoregressive statistical time series model of one series, in this 

case the spectral flatness series, so that the residuals from the model are white noise, i.e. free of 

autocorrelation (tested with Bartlett’s periodogram-based test (Bartlett, 1966)). This standard process of 

modeling is detailed below in section 3.4. The resultant autoregressive model of spectral flatness, in terms 

only of its autoregressive lag structure and coefficients, is then used to model the second time series, in this 

case that of intensity, generating a further time series of residuals from the intensity profile. This second 

residual time series may or may not be free of autocorrelation, depending on how similar the intensity 

autocorrelation structure is to that of spectral flatness. Then the cross-correlation between the pair of 

residual series can be assessed meaningfully. By removing the autocorrelation within the first series, and 

any similar components in the second, pre-whitening allows a valid assessment of the cross-correlation 

between the two parent series. Technical details of the procedure are summarized clearly in McDowell 

(2002). Pre-whitening is not required for any of the further analyses because the autoregressive structure of 

the stationarized series under study is addressed directly in the modeling.  

  

Perceptual Measurements of Change in Sound and Affect 

 
The procedures for making perceptual measurements are described in detail in previous work in which 

participants responded continuously to short segments of constructed electroacoustic timbres (Bailes & 

Dean, 2009). In this study, our participants (N = 32, 16 female, median 25.5 years) were 16 ‘non-

musicians’, 8 classical musicians, and 8 experts in computer music. They were categorized on the basis of 

their Ollen Musical Sophistication Index (Ollen), together with information they provided about their 

experience with electroacoustic music. Non-musicians had OMSI scores <500, indicating ‘less musically 

sophisticated’.  

Listening over headphones, participants indicated their real-time perceptions of ‘change’ in the 

sound stream using a mouse scrubbing technique: they were instructed to move the mouse only if they 

perceived change in the sound, and move it faster for greater rates of change. Mouse movements were 

captured every 50 ms, and the rates of movement were averaged over 0.5 s windows. Such windows are 

appropriate given earlier studies (e.g. Schubert, 2004), which indicate that real-time perceptual responses 
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generally take at least 1 to 5 seconds for full registration. It is such delays (lags) that we study with TSA 

below. Real-time perception of expressed affect, that is explicitly the affect that listeners perceive to be 

associated with the sound (rather than induced), was measured in a separate experimental block using a 

‘2D-emotion space’ based on that established by Schubert and others, and written in Java. One axis 

displayed on a computer screen represents the perceived arousal of the sound (active – passive), and the 

other (at 90 degrees to it) represents the perceived valence (positive – negative). Cursor position within the 

2D emotion space is recorded every 0.5 s.  

Data series obtained from multiple participants were averaged to give a representative series for 

each perceptual parameter, which could be studied by time series analysis. This choice is commonly made, 

and was supported by the fact that when the time series were averaged by participant group subsets, the 

resultant series for each perceptual variable were similar across the three groups; the choice is considered 

further in the Discussion section.  

Coefficient of variation (c.v. = standard deviation/mean) is used as an index of the variability of a 

time series. For the perceptual time series of arousal and valence, the measurement scale ranges from -100 

to +100: for these series, c.v. is determined as a function of series constructed as the measured values plus 

100, so that all series values are positive, and the c.v. then fairly reflects the degree of variability when 

taken in conjunction with the mean value. Any mean value displayed in the data below is of course that of 

the original series. When it is of interest to compare the relative impacts of different acoustic factors in a 

model of perceptual series, this is also done in such a way that the measurement is independent of the 

numerical ranges of the series under study (e.g. by fractional error variance distribution measurements in 

vector autoregression, see below).  

 

Time Series Analysis of Correlations between Intensity, Spectral Flatness and Listener 

Perceptions: Methodological Approach 
 

Since listeners cannot influence acoustic parameters, these are appropriately taken to be exogenous 

variables (independent, using the terms of empirical psychology), for the purpose of TSA, while the 

perceptual parameters are endogenous (dependent). The first step in the analysis (see Figure 1) is to remove 

outliers in the endogenous and the exogenous series, those values more than 2.5 standard deviations from 

the series mean, and to replace them by the nearest value within that range (i.e. the appropriate nearby 

value either + or – 2.5 s.d. from the mean). Generally no more than 5 values are adjusted (< 1.4% of the 

data points). Data under study in work such as this are often not normally distributed. Thus instead of 

removing outliers, one may alternatively use ‘robust’ statistics: the salient conclusions below have been 

confirmed by this alternative approach.  

The next step in our approach is to obtain stationarized series (as summarized above). To this end, 

the autocorrelation and partial autocorrelation functions of the endogenous series are determined, and used 

to set the lag range for the Augmented Dickey-Fuller Generalized Least-Squares test for stationarity 

(Dickey & Fuller, 1979) using the Elliott, Rothenberg and Stock interpolated critical values (Elliott, 

Rothenberg, & Stock, 1996). Put simply, the test assesses whether the series value at a given time is a 

predictor of change to the next point: for a stationary series (constant mean), it should be a predictor with a 

negative coefficient, since larger than mean values tend to be followed by smaller ones, and vice versa so 

that in both cases the next value is closer to the mean. Conversely, for a non-stationary series, this 

expectation is not true. The ‘augmented’ part of the test allows for its autocorrelation structure, and the 

Elliott et al. critical values were empirically derived to enhance the power of the test. Endogenous series 

are differenced until stationarity is achieved. It should be noted that if a series is differenced, the result still 

bears a simple mathematical relation to its parent, thus a prediction from a model based on differenced 

variables can be converted back into a prediction of the parent variable, and the relationships will be 

qualitatively similar. Such conversions are not presented here, since they would not aid the interpretation 

of the results. After differencing, any further outliers are adjusted, but with the more stringent criterion of > 

3 s.d. from the mean (generally, 0-2 values are adjusted). The resulting series may still show transient 

changes in variance, which are not sufficient to breach the overall criterion of weak stationarity. Such 

variance is described as heteroskedasticity (sometimes spelled heteroscedasticity). In the present work, 

additional variance stabilization techniques are not used since conditional heteroskedasticity, in which the 

variance of the ongoing data stream may be transiently affected by changes in the exogenous variable, is of 

interest (see below).  
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Fig. 1. Summary of the key stages of autoregressive Time Series Analysis (TSA), as discussed in the text. 

 

For modeling the possible relationship between one endogenous and one exogenous variable, the 

exogenous time series is transformed by the same process as is used to make the endogenous series 

stationary (Enders, 2004). Granger Causality (an index of correlation between variables, which is used to 

assess the likelihood of a predictive relationship (Granger, 1969)) between the transformed variables is 

assessed with up to 8 lags (a lag being 0.5s) of the variables under consideration and using initially one 

acoustic variable together with the one perceptual variable. This is done using Vector Autoregression (see 

below), with the selection order criteria used to indicate the initial number of lags to study with the Akaike 

Information Criterion (AIC) (Akaike, 1974) as the determining factor, and treating variables temporarily 

and conservatively as if they are all endogenous, i.e. potentially mutually dependent; see below.  The AIC 

is an estimate of the goodness of fit of a model, which uses the likelihood estimate for the model, together 

with the number of parameters it involves. Only relative values are informative, and lower values indicate a 

better model. We routinely determine the Bayesian Information Criterion also, and this penalizes for the 

number of parameters more strongly for large sample numbers than does the AIC. Since we have a large 

number of data points in every case, the BIC and AIC lead to the same interpretations with our data. The 

lag order may be increased if necessary to ensure that the residuals (errors) from the model for any 
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particular endogenous variable are White Noise (i.e. they have no remaining autocorrelation), as discussed 

further below.  

Given Granger Causality of one or both acoustic time series upon the perceptual time series under 

study, we proceed to the corresponding bivariate modeling. The autoregressive integrated moving average 

procedure with an exogenous variable (ARIMAX) is used to model the relationship. The cross-correlation 

between the two series is used to determine the appropriate lags of the exogenous (acoustic) variable to 

model as predictors of the endogenous (perceptual) variable. The autocorrelation and partial 

autocorrelation of the now stationary endogenous variable is used to determine the autoregressive lags and 

moving average (MA) groupings to be included. First the model based on the exogenous component is 

optimized by the least squares fitting without modeling the autoregressive serial correlations in the 

residuals. Then an autoregressive and moving average model for those residuals is added (as appropriate), 

so that the overall model can be refit, often removing some of the exogenous variables, and now the 

remaining errors can be correctly calculated. Model refinement is throughout based on removing 

statistically insignificant terms, and testing for an improvement (minimization) in the Akaike Information 

Criterion (AIC) for the model. It is arbitrarily determined that not more than two lags of a variable which 

are not in themselves statistically significant may be included in the model if they improve the AIC and 

also provide a statistically significant likelihood ratio test in comparison with their nested parent model 

(i.e. these lags improve the predictive capacity of the model). Similarly, shorter lags are preferred over 

longer given that the AIC for the alternatives are similar. Note again that the AIC can only be meaningfully 

compared between ARIMA(X) models of the same series. 

Given the best model from this process, residuals are predicted, and tested for lack of 

autocorrelation, and most importantly for the subsequent statistical significance tests, tested for White 

Noise character, as described above. A satisfactory model with White Noise residuals is then used to 

predict the time series of the endogenous (perceptual) variable, and its goodness of fit to the observed data 

is measured as the correlation between the two, as well as by testing for forecast bias and using Theil’s U 

(model U2 of chapter 2 in Theil, 1966). Theil’s U determines whether the model is better than a Naïve 

Method 1 forecast (which simply projects the last measured value forward, the so-called ‘no change’ 

approach). Theil’s U is essentially the ratio of the root mean square error of the predicted series to that of 

the ‘no-change’ series, and hence values lower than one are indicative of a worthwhile model. Only models 

that meet these criteria are presented here. The ARIMAX models derived in this manner are compared with 

an ARIMA-only model of the same form (i.e. excluding the exogenous variable), and with ARIMA-only 

models that may include additional autoregressive lags, and improve the Akaike Information Criterion over 

the initial ARIMA model. 

It is also sometimes of interest to determine whether the perceptual time series shows 

Autoregressive Conditional Heteroskedasticity (ARCH; where the variance is autoregressive and 

conditional) (Enders, 2004; Hamilton, 1994), and also whether the variance is conditioned by the input 

acoustical series (c.f. Enders, 2004, p. 141). This is done by testing for the impact of the exogenous 

variable upon the overall model fit, both with and without a Generalized ARCH model. 

Following the ARIMAX analyses, Vector Autoregression (VAR) (Enders, 2004; Hamilton, 1994) 

analysis is undertaken (c.f. its earlier use simply to support a Granger Causality test to determine what 

further analyses should be made). Here the conservative choice is made that all variables are treated as 

potentially mutually influential (i.e. statistically endogenous). VAR with the acoustic time series treated as 

exogenous (VARX) is also undertaken for confirmatory purposes; these are not presented below, since 

they are uniformly in qualitative agreement with the interpretation from the VAR analyses with respect to 

the possible influence of the acoustic variables. Lag order selection statistics, information and likelihood 

criteria indicating the statistical adequacy of models of various lag number (‘order’), are used to determine 

the order of the VAR to be performed, with the AIC again taken as primary.  

VAR can be undertaken both with series that are and are not stationary, and statistical significance 

can be assigned providing the residuals from the model in question are white noise. This allows the use of 

the undifferenced series, and thus interpreting relationships between (for example), once differenced series 

can be avoided. Thus we first model VARs for combinations of variables transformed to stationarity during 

the ARIMAX analyses. However, after a VAR of an untransformed perceptual time series (but still with 

outliers removed) and with untransformed acoustic series, we also test for Granger Causality between the 

variables. We predict the VAR model for each individual transformed perceptual variable, but only with 

those acoustic variables that demonstrate Granger Causality upon it. The residuals from the predictions are 

tested both for White Noise character and lack of autocorrelation, and interpretation accepted if they meet 



Empirical Musicology Review  Vol. 5, No. 4, 2010 

 159 

the criteria. VAR stability is assessed, and the Wald-lag exclusion criteria applied to determine the 

appropriateness of the inclusion of the modeled lags (Wald, 1955). The Wald-lag exclusion criterion tests 

whether the endogenous variables at a given lag are jointly zero for each equation and also jointly for all 

equations. Thus it indicates a judicious choice of lags to include in a model. Our approach is less 

conservative than one requiring the whole set of residuals from every component prediction of the VAR to 

be autocorrelation free and to comprise normally distributed disturbance. VAR results are displayed as 

Cholesky forecast-error variance decompositions (FEVD) (Lütkepohl, 2007), with standard errors obtained 

from bootstrapped residuals (so that no assumption need be made about their distribution). The FEVD is 

essentially an estimate of the proportional influence of each variable on the others, and it is projected 

through a series of lags (called steps in the Figures), as the mutual influences vary. The dominant influence 

on a highly autocorrelated variable at the earliest lags is of course the variable itself, while the effect of the 

other influences shows progressively thereafter. VARs are also undertaken with all acoustic and perceptual 

variables included together, since the perceptual variables may well influence each other.  

At each relevant level of transformation of the variables (e.g. raw, once-differenced) a test for 

cointegration of each combination of variables is undertaken. Cointegration, simply described, occurs 

when two or more variables together form a linear combination that is itself stationary, even though the 

variables themselves are not. Cointegration can be modeled using Vector Error Correction (Engle & 

Granger, 1987), but it was not found in any of the series under study.  

 

 

RESULTS 
 

Acoustic Analyses 
 

Figure 2 shows the spectral flatness and intensity temporal profiles of the Wishart extract. There are some 

clear parallels between the two series. Autocorrelation analysis of the intensity profile shows an 

autocorrelation close to 1 at lag 1 (corresponding to 0.5sec), declining smoothly by 13.5 seconds to a value 

indistinguishable from zero, using Bartlett’s formula for 95% confidence bands. Correspondingly, the 

partial autocorrelation at lag 1 is close to 1, and lags 2-4 are significant, and just above the confidence 

band. The autocorrelation function for spectral flatness shows a slightly less smooth decline from .84 at lag 

1 to insignificantly above zero by lag 24 (12 seconds), while the partial autocorrelations for lags 1-4 are 

again significant. Both series thus seem to be autoregressive with lag order 4 (which we abbreviate here 

and in the Tables as AR4). 

 An ARIMA model of spectral flatness reveals significant autoregressive lags 1-4 (confirming the 

AR4 characterization), and the residuals of this model are white noise (for a cumulative periodogram 

Bartlett’s B = 0.50, Probability > B = 0.967). This model is used to filter the intensity time series so that the 

possible positive collinearity of the two acoustic series can be tested, as described in Methods. The raw 

series show a negative cross-correlation of -.83. Only limited significant and negative cross-correlation of 

the pre-whitened spectral flatness and filtered intensity residual time series remains at lags 0 and 1 (-.36 

and -.38 respectively). Thus both intensity and spectral flatness remain separable potential influences upon 

listeners’ perception of this music.  

 

Perceptual Responses 
 

Figure 3 shows the average perceptual response for sonic change, and Figure 4 shows those for perceived 

arousal and valence. The coefficients of variation of these perceptual response participant-averaged time 

series are 0.74, 0.33, and 0.19 for change, valence and arousal respectively. Both arousal and valence seem 

to be AR(2) processes, while change seems to be AR(4) (as judged again by the autocorrelation and partial 

autocorrelation functions: not shown). It can be seen that change and arousal correlate closely, while 

arousal and valence show a somewhat inverse relation. The relationships between these perceptual 

responses are assessed in greater depth as the analysis proceeds. 
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Fig. 2. Spectral flatness (Wiener Entropy) and intensity (dB) profiles of the Wishart extract. Spectral 

flatness is shown multiplied by 4, to make its features more apparent. The waveform, showing the two 

stereo channels, is above and aligned with the acoustic measures.  

 

Relationships between Acoustic Intensity, Spectral Flatness and Perceived Change 
 

The perceived change time series is only stationary after one differencing, and the resultant series is named 

dchange below (where d or d2 … dn indicate the number of differencing steps applied to achieve 

stationarity). Dintensity shows highly significant (p < .001) Granger causality upon the dchange series 

derived by differencing the perceived change series correspondingly, as judged by a preliminary VAR 

analysis (Table 1). There was no reciprocal causality, appropriate given that the acoustic series are literally 

exogenous. The differenced spectral flatness time series (‘dspectralf’) was not Granger causal of perceived 

change. 
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Fig. 3. Perceived ‘change in sound’ through time in the Wishart extract, averaged across participants. 
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Fig. 4. Perceived arousal and valence through time in the Wishart extract, averaged across participants. 

Table 1. Granger causality Wald tests for predictor series influencing the dchange time series  

 

Predictor series chi2 degrees of freedom 

(variables) 

Prob > chi2 

dintens 159.4 3 .000 

dspecf 4.26 3 .234 

ALL 178.5 6 .000 
 

Note. The Table gives a probability that the chi-square value associated with the individual series dintensity and 

dspectralflatness as predictors of dchange could occur by chance, and the corresponding probability for the model as a 

whole. The degrees of freedom are those associated with the lags of the individual predictors and the model as a whole. 

 

Thus detailed ARIMAX modeling solely of the relationship between intensity (dintensity) and 

perceived change (dchange) is undertaken, and the results (a model of the local mean value through time, 

as opposed to its variance: see below) are shown in Table 2 and Table 3. Cross-correlation analysis 

suggested that several lags of the dintensity series might impact on dchange, which would correspond to 

influences beyond 1 s, not unreasonable given previous literature (Schubert, 2001, 2004; Sloboda & 

Lehmann, 2001). Lags are referenced as L1 L2 … Ln. As shown by the Wald chi, the model overall is 

highly significant. L1 and L2 were also individually highly significant. The autoregressive part of the 

model of the dchange series is also shown. Thus AR lags 1-3 were highly significant. No constant was 

required. The results from the analysis are shown in detail in Table 2, to illustrate the source of the 

summarized results shown for other analyses in this paper.  

 

Table 2. ARIMA(X) model of the influence of intensity on real-time perceived change in Wishart’s Red 

Bird extract, using once-differenced series. ARIMA regression model: l(1,2).dintensity, ar(1,2,3) no 

constant. Model probability, p < .0000  

 

 Coef. Std. Err. Coef. p < [95% Conf. Interval] 

modeled series: dchange      

Predictor series:   

dintensity 

     

  L1 .006 .000 .000 .005 .006 

  L2 .002 .000 .000 .001 .002 

ARMA      

  ar      

  L1 -.391 .033 .000 -.455 -.327 

  L2 -.285 .043 .000 -.370 -.200 

  L3 -.145 .040 .000 -.224 -.065 

  /sigma .045 .001 .000 .043 .047 

 

Information Criteria: 

Observations Log likelihood(model) degrees of freedom (model) AIC  

390 655.605 6 -1299.211  
 

Note. The model summary means that dchange is predicted by lags 1 and 2 of dintensity (exogenous predictor series), 

together with autoregressive lags 1-3 of itself. No constant is needed for the model. The model predicts dchange as 

.006(l1.dintensity) + .002(l2.dintensity) - 0.391(l1.dchange) - 0.285(l2.dchange) - 0.145(l3.dchange). All the predictor 

series are individually highly significant. The number of observations reported in the model is reduced from that 

measured on account of the number of lags used in the model. 

 

The residual series of this model as of all others presented is white noise, and the prediction from 

the model does not show forecast bias and has a Theil’s U less than 1, indicating a useful predictive 

capacity. The Akaike Information Criterion (AIC) reaches its minimum value for ARIMAX models of -

1299.2, which can be directly compared with those from the other ARIMA(X) models of this same time 
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series, discussed shortly. The correlation between actual and forecast is 0.62, and the sum of squared errors 

is 0.79. The median absolute percentage error is 16.1%.  

Table 3 also shows the best ARCH model, which models the variance as well as the mean. 

Dintensity induced highly significant conditional heteroskedasticity, representing its influence on the 

variance change in the endogenous variable dchange, and both ARCH(1) and GARCH(1) were highly 

significant. This model was significantly improved (for example, AIC was -1376.0) in comparison with the 

ARIMAX only model. 

 

Table 3. ARIMAX with ARCHX model of the influence of intensity on real-time perceived change in 

Wishart’s Red Bird extract, using once-differenced series. ARCH family regression, ARMA disturbances 

and conditional heteroskedasticity: the model is l(1).dintensity, ar(1,2,3) noconst het(dintensity) arch(1) 

garch(1). Model probability, p < .0000. 

 

 Coef. Std. Err. Coef. p < [95% Conf. Interval] 

Modeled series: dchange 

Predictor series: 

     

  dintensity      

  L1 .004 .000 .000 .004 .004 

ARMA      

  ar      

  L1 -.403 .066 .000 -.532 -.275 

  L2 -.197 .060 .001 -.314 -.079 

  L3 -.113 .060 .060 -.231 .005 

HET      

  dintensity -.244 .030 .000 -.303 -.185 

  constant -9.225 .294 .000 -9.802 -8.648 

ARCH      

  arch      

  L1 .342 .056 .000 .232 .4523 

  garch      

  L1 .638 .036 .000 .569 .708 

 

Information Criteria: 

Observations Log likelihood(model) degrees of freedom (model) AIC  

391 695.990 8 -1375.981  
 

Note. Besides ARIMA components considered in earlier examples, this model includes autoregressive 

heteroskedasticity (represented by the ARCH and GARCH predictors) and the influence of an exogenous factor 

(dintensity) on the heteroskedasticity of dchange, the modeled series. This latter influence is commonly termed 

multiplicative heteroskedasticity. 

 

In contrast to these ARIMAX/ARCH models, incorporating the several influences of the 

exogenous variable intensity, the best of the acceptable ARIMA models of the autoregressive dchange 

perceptual series alone (AR(1,2,3), with ARCH (1) and GARCH(1) components included), had an AIC of -

1266, and showed a correlation between actual and forecast of only .31, had a sum of squared errors of 

1.16 and median absolute percentage error of 49.5%, being substantially worse on all counts even than the 

simple ARIMAX model without ARCH components. These data reveal that even though an autoregressive 

ARIMA-only model progressively embodies the continuing impact of prior exogenous events, such as 

intensity changes, dintensity is an important predictor in the ARIMAX model, which enhances its 

performance. Such a positive correlation might be expected of a variable that is psychologically causal, but 

it is not necessarily always so strong. Furthermore, dintensity is also a significant predictor of conditional 

heteroskedasticity, as shown in the ARCH modeling, underscoring its potential perceptual influence.  

As mentioned already, given the knowledge of the intensity time series, spectral flatness was not a 

significant predictor; though it is worth noting at this point that considered alone dspectralf showed 

Granger Causality upon dchange (and not vice versa). This possible modest influence of spectral flatness 
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on perceived change is assessed further in the VAR analyses below, which also provide estimates of the 

extent of the impact of the acoustic variables upon the perceptual outcomes. 

 

Time-Series Modeling of Relationships between Acoustic Variables and the Perception of 

Affect 
 
ACOUSTIC VARIABLES AND AROUSAL: ARIMAX/ARCH MODELS OF THE INFLUENCE OF INTENSITY 

ON AROUSAL 

 

Only intensity is significant in Granger Causality tests based on VAR of the untransformed series; there is 

no reciprocal Granger causality. However the arousal time series is not stationary until once differenced 

(‘darousal’), and thus consideration is given to darousal, dintensity and dspectralf. In this context again 

dintensity but not dspectralf was Granger-causal upon darousal, and there was no reciprocal influence. 

Thus modeling is undertaken for the relationships of dintensity to darousal. 

The cross-correlation analyses indicate that lags of dintensity up to 20 might be influential, and 

accordingly the best ARIMAX alone model includes lags 1-10 and 17 (with coefficients from .13 at lag 2, 

to 0.02 at lag 17), together with AR(1,3) and MA(20) (where MA(n) is a moving average window of n lags 

in length). The AIC is 1112.8, and there is a correlation between actual and forecast of .70, with a median 

absolute percentage error of 12.3%. The ARCH assessment demonstrates that dintensity does not influence 

heteroskedasticity of darousal, but that AR(1), MA(20), ARCH(1) and GARCH(1) improves the AIC to 

1040.8, without change to the ARIMA lags of intensity in the model, though their coefficients are now 

from .10 at lag 2 to .02 at lag 17 (ARCH(n) and GARCH(n) again indicate respective model components 

with n lags). The ARIMAX/ARCH modeling of this relationship suggests that dintensity is a positive 

influence upon darousal, and hence similarly intensity upon arousal.  

 
ACOUSTIC VARIABLES AND VALENCE: ARIMAX/ARCH MODELS OF THE INFLUENCE OF SPECTRAL 

FLATNESS ON VALENCE  
 

The VAR of untransformed perceptual valence, spectral flatness and intensity time series reveals neither 

acoustic series to be Granger-causal for the perceptual series; nor does the literature provide a previous 

strong association. However, valence is made stationary only by once differencing, and hence the VAR is 

also performed on the differenced series (dvalence, dintensity, dspectralf). This shows significant (p = 

.021) Granger Causality of dspectralf on dvalence (and not vice versa), and hence this is modeled by 

ARIMAX. A highly significant model with lags1-12 and 15 of dspectralf (coefficients between .55 and 

.04) and autoregressive lags 1 and 4 (coefficients .54 and .08) was obtained (no constant in the model). 

This model passed the quality tests, and showed an AIC of 1062.6, a correlation between actual and 

forecast of .68, median absolute percentage error of 4.4%, and had a sum of squared errors of 342. ARCH 

modeling revealed a significant conditional heteroskedasticity of dspectralf on dvalence and the best 

ARCH/GARCH model was dspectralf lags 1-11 and 15, together with ARCH(1), GARCH(1), AR(1,4) and 

the heteroskedastic input of the dspectralf series (coefficient -.57). It had an AIC of 1028.9, passed the 

quality tests, again showed a correlation between actual and forecast of .68 and had a sum of squared errors 

of 351, together with median absolute percentage error of 11.2%, thus being slightly worse than the 

ARIMAX only model. Figure 5 compares the ARIMAX forecast for 50’’ to 1’40’’ with the corresponding 

data series; these forecasts are extracted from the prediction of the whole series. The quality of precision 

shown is highly representative of that for the whole series (from which it is taken); a short section is 

chosen simply so that the detail is readily visible. As is generally the case in such good predictions, the 

forecast follows quite closely, but often in a damped-down fashion. These data suggest that as sonic 

complexity increases, valence becomes more positive. 

In contrast with the best ARIMAX-only model, the best ARIMA only model is simply AR(1), and 

it had a significantly worse AIC of 1171.1. It just passed Theil’s U, did not show forecast bias, and had an 

almost equally high correlation between forecast and actual (.65), with sum of squared errors at 460.5, and 

median absolute percentage error less than 0.1%.  

Dspectralf thus seems to be potentially an influence on dvalence, but this view is slightly 

tempered by the relatively good fit achieved with the ARIMA-only model. On the other hand, as noted 

already the autoregressive components of an AR model include the representation of the earlier impacts of 
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any exogenous factors. The following VAR analyses consider further the possible influence of spectral 

flatness on valence. 

 

 
Fig. 5. The valence series (differenced) together with its ARIMAX model prediction, taken from 50-140 s 

into the extract. The forecast is an attenuated version of the measured valence series, but follows very 

closely. 

 
VECTOR AUTOREGRESSIVE (VAR) ANALYSIS OF RELATIONS BETWEEN ACOUSTIC AND 

PERCEPTUAL VARIABLES 

 

A key benefit of VAR is its capacity to co-relate multiple time series simultaneously, and to treat them 

either as potentially mutually influential (‘endogenous’), or potentially independent, solely input 

(‘exogenous’) variables. We adopt primarily the statistically less restrictive approach in which variables are 

all treated as endogenous. In addition, most presented analyses concern stationary variables. Comparative 

VARX studies in which the acoustic variables are treated as exogenous (X) are made in each case; these 

simplify the vector decomposition. Both VAR on untransformed variables and VARX in the present papers 

produce results concordant with the VAR of stationarized variables (and hence VARX results are not 

shown).  

 In the case of dchange, as noted above, the VAR together with both dintensity and dspectralf 

shows only dintensity to be Granger causal, and not dspectralf. Thus Figure 6 shows the result of a (4-lag) 

VAR of dchange and dintensity in the form of the forecast-error variance decomposition (FEVD), which is 

an indication of the impact of variables on a given output, lag by lag, in this case on dchange. Such impacts 

are termed ‘impulse response functions’, as in the Figures. The 95% confidence intervals confirm the 

significant impact of dintensity on dchange, consistent with the ARIMAX correlation of the forecast from 

the dintensity/dchange model with actual, described above. 
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Fig. 6. Forecast-error variance decomposition (FEVD) from a 4-lag VAR, representing the lag-by-lag 

impact of dintensity on dchange, the ‘impulse response function’. The 95% confidence intervals (shaded) 

confirm the significant impact of dintensity on dchange, since they do not breach zero. From lag 2 (1 sec) 

onwards the predictive power of change on itself (i.e. its autoregressive property) declines, while 

correspondingly that of dintensity increases and maintains statistically significant values. 

 

 Given the just significant (p = .046) Granger causality of spectral flatness on change judged by a 

VAR of the untransformed variables (with white noise residuals for the change model), Figure 7 shows the 

resultant FEVDs. This confirms the substantial impact of intensity (the FEVD reaches a maximum of 

almost 0.5), but shows that the confidence limits for the impact of spectral flatness render it not only very 

small (< 0.03) but also statistically insignificant. 

Spectral flatness is not considered in VAR of arousal, because it is not Granger-causal with 

respect either to the untransformed or differenced series, as mentioned above. Figure 8 shows the 

significant impact of intensity on arousal as judged by the appropriately tested VAR of the untransformed 

time series. 

 VAR of valence with untransformed intensity and spectral flatness series shows neither as 

Granger-causal, within the 4 lag-analysis prescribed by the AIC criterion for order of VAR. After making 

the series stationary, dspectralf (but not dintensity) is Granger-causal on dvalence as noted above. 

However, its impact is very slight (FEVD maximum c. 0.02) and not statistically significant. The impact of 

dintensity is slightly bigger, but again, not statistically significant. The untransformed series is investigated 

further, and lags up to 7 (3.5s), predicated by the lag order selection criterion, again showing a significant 

Granger-causality for spectral flatness upon valence, while intensity remains just outside significance. 

However, it is only intensity whose FEVD reaches modest values (c. 0.17 at lag 8) to which confidence 

levels above zero attach. 
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Fig. 7. FEVDs from a VAR of the untransformed variables (with White Noise residuals for the change 

model). The figure shows a strong impact of intensity on change, but not spectral flatness on change (small 

and statistically insignificant given the confidence limits). 

 

 Before leaving VAR analyses, advantage is taken of its capacity to model multiple series even-

handedly, thus allowing the study of the possible mutual influences of the perceptual variables, notably 

mutual influences amongst change, arousal and valence. In other words, as mentioned already, variables 

entering a VAR model can be treated either as endogenous (potentially mutually influenced, such as our 

perceptual variables) or exogenous (solely a source of input influence, such as our acoustic variables). 

These two categories of statistical variable correspond to psychological dependent and independent 

variables, but with one difference. The difference is that statistical endogenous variables can be readily 

assessed for mutual influence, whereas to do this with ‘dependent’ variables in psychological experiments 

is more complex.  

Using four lags, such a VAR model including all the perceptual and acoustic variables as 

endogenous passes all tests and suggests Granger-causality of arousal and intensity upon change; change 

and spectral flatness upon valence; and valence and intensity upon arousal. There are no causalities on 

intensity, but valence is Granger-causal of spectral flatness, which of course is only because spectral 

flatness is being treated solely for purposes of conservative analyses as an endogenous (dependent) 

variable though it is clearly not. After impulse response function analysis only intensity is significant for 

change (judged by the confidence intervals not breaching zero), reaching > 0.4 at lag 8, in agreement with 

earlier analyses. By the same assessment, only change influences valence (maximum FEVD c. 0.18 at lag 

8); and only intensity influences arousal (maximum FEVD c. 0.38 at lag 8). The conclusions from the VAR 

with all series included are consonant with those reached earlier.  

 Thus, valence responses to the Wishart extract are only weakly influenced by the chosen acoustic 

variables. This encourages further consideration of the specific sonic features of the Wishart piece, which 

were amongst the bases for choosing it for study (see below); these might be of particular importance for 

valence responses. 
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Fig. 8. FEVD from a VAR of the untransformed time series showing a significant impact of intensity on 

perceived arousal. 

 

Animate Sounds and their Influence: Possible Impacts of ‘Agency’ 
 

Current musicological theory is heavily concerned with issues of narrative and agency (Clarke, 2005; 

Maus, 1997; Overy & Molnar-Szakacs, 2009). ‘Agency’ is often a metaphor for perceiving or attributing 

‘anthropomorphic influence’, and Wishart is a composer with an intense involvement with the human 

voice and its possible impacts (T. Wishart, 1985). So one reason for our choice of the section of his piece 

for study is that it contains many intermittent impressions of human vocal sounds and other animate but 

non-human sounds. The locations of the human vocal and the animate sounds in the piece, as judged by 

two musicologists experienced in making and listening to electroacoustic sounds, are shown graphically in 

Figure 9. The perceptible events are all short and discrete, thus the timing of these zones is clear-cut to a 

greater precision than the 2Hz sampling rate for the acoustic variables. The influence of these two potential 

agents upon arousal and valence was assessed in additional ARIMA and VAR analyses, entering them as 

impulse variables (i.e. of constant effect throughout their presence, and nil in their absence), and assessing 

whether such an effect is present and statistically significant (i.e. has a coefficient significantly different 

from zero).  

The most interesting result is that the ARCH model of dvalence described above, which includes 

the conditional heteroskedasticity of the input dspectralf series, is improved by the heteroskedastic input of 

animate sounds (‘animatesd’) (AIC 1023.0), but dspectralf itself becomes statistically insignificant while 

animatesd is significant. When dspectralf is dropped from the model and animate sound retained amongst 

the potential conditional heteroskedastic variables, and amongst the mean model variables, the model is 

improved still further (AIC 1015.4), and animatesd remains highly significant (p = .001 for the mean 

model and p = .005 for heteroskedasticity). Given this model, the addition of the human voice parameter is 

not significant for the mean model, but it influences heteroskedasticity (p = .008) and enhances the AIC to 

1010.6. These results suggest the importance of sonic and structural features that are specific to the 

perception of physical origins for sounds; amongst other things, in future studies these may supplement the 

acoustic variables of focus here. 
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Fig. 9. A time line of the Wishart extract, indicating where there are animate and human voice sounds. 

 

  

DISCUSSION 
  

It is important to re-emphasize that statistical analyses such as these demonstrate significant correlations. 

These may reflect causal relationships, and they constitute a minimum criterion for considering such 

causality further. One of the important reasons for studying electroacoustic music is that it can be generated 

by entirely algorithmic means, such that experimenters possess a logical and quantitatively definable 

means of altering pieces, without having to make questionable assumptions about the nature and method of 

composition of a previous piece e.g. by Haydn; or about the potential perceptual impacts of the tuning or 

metrical systems it uses e.g. Western tonality (this is not to imply that Wishart himself composes in this 

way). Thus in future experiments, electroacoustic compositions can be entirely defined as algorithmic 

structure, and systematic perturbations of the algorithm (e.g. the range of spectral flatness over which it 

evolves, or the pattern of intensity expressing an otherwise unchanged sonic structure) can be used to 

assess the consequent changes in perceptual responses. This will allow further insight into causal 

relationships between acoustic properties and perception.  

The most important purpose of this paper is to develop an autoregressive time series analysis 

platform for such further studies of acoustic-perceptual relationships in music. Besides this, the striking 

results are the demonstration of strong positive correlations between temporal patterns of intensity and 

perceived change and arousal. While there are few previous data on the perception of continuous change, 

the result for arousal is consistent with some earlier research, such as that by Schubert on Western classical 

music extracts (Schubert, 1999, 2001, 2004). By providing much fuller time series analysis, and by using 

unfamiliar music and a wide range of listeners, the current study strongly supports the conclusion that 

intensity profiles are important in perceived real-time arousal expressed in many kinds of music. The use 

of the 2-D emotion space is based on previous multidimensional scaling studies of relationships between 

the retrospectively perceived overall affect expressed in short extracts and their averaged acoustic 

properties: these suggest that arousal and valence dimensions of affect can at the least usefully be separated 

(Bigand, et al., 2005; Leman, et al., 2005). The results from the current VAR analyses overall confirm their 

statistical independence in the data assessed here.  

It is also shown here that intensity can be a strong influence on perception of continuous change in 

music. The measure of perceived change through time has hardly been studied previously apart from our 

earlier study on short juxtaposed segments of computer generated sound (Bailes & Dean, 2009). It is 

difficult to test in a continuous response paradigm whether musically untrained listeners perceive 

‘structural’ events in music in the sense that music analysts refer to structure, because listeners do not 

usually have an explicit awareness of the parameters of such analyses. Evidence on failure of perception of 

large-scale musical features such as tonal closure support this view (Cook, 1987). Evidence on the short 

time scale does suggest that listeners perceive segmentation in a manner largely influenced by surface 

events in the sound stream (Deliège, et al., 1996; Lalitte et al., 2004). The approach taken in the current 

study allows listeners to identify change for themselves, and deals directly with the sonic temporal patterns 

that they hear, and which therefore are likely to influence them affectively. This is not to suggest the 
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unrecognized or unattended features cannot be affective, but that it may be more feasible to demonstrate 

the influence of recognized features. Further analysis of the patterns of perceived change can allow the 

demonstration of larger scale ‘structure’ within it. 

This paper illustrates an alternative approach to that of assessment of the importance of musical 

features defined by composer/musicologist, particularly in the investigation of the impact of animate and 

human voice sounds on listener perceptions and on their variance. Clear evidence is provided for an impact 

of these features, and the approach can readily be generalized. For example, in continuous perception of a 

sonata movement, large-scale analytical structures could be assessed as determinants of perceptual outputs. 

More limited versions of such an approach have suggested some coincidences between musical events 

defined analytically and perceptual changes (e.g. Krumhansl, 1996; Madsen & Fredrickson, 1993). The 

animate and human voice sounds in the present piece seem to possess agency, in that they can be 

metaphorically described as playing an ‘active’ role in a partially predictable series of events (the 

narrative). As noted above, such metaphors are generally anthropomorphic, but here some sound sources 

are literally human, while the animate sounds can be construed anthropomorphically. In future work it will 

be feasible to postulate agency in a concerto solo part, and empirically assess its perceptual influence; or to 

assess the impact of identifiable physical sources for environmental sounds of potential biological 

importance (Clarke, 2005; Gaver, 1993). In other recent work (Bailes & Dean, submitted), we have 

successfully used the current methodological approach to compare analyses of the Wishart piece with those 

of two other electroacoustic pieces, and with a piano piece from the same century and a classical orchestral 

piece, which are both note-centered rather than based on sonic texture. This work also compares the 

perceptions of highly trained musicians with others. The work confirms the general utility of our approach. 

It is worth discussing two technical aspects of statistical procedures relevant to this work. The first 

is our approach of simply averaging the multiple time series from our 32 participants, as is commonly 

done. While this removes the variability between the individual series, they can be studied separately, as 

we have done in work under preparation. There are at least two alternative approaches that can be used, 

singly or in combination. The first is ‘standardization’ of each series, which means expressing the values in 

terms of their deviation from the series mean (which can be arbitrarily set at any appropriate value for this 

purpose) as a proportion of the overall standard deviation for that series. This routine technique reduces 

apparent variability between individuals, but does not reduce the multiple series to just one, and so it too is 

often followed by simple averaging. The second is ‘registration’, a feature of time warping. The principle 

here is either that every feature of each time series should be shared, and hence successive peaks and 

troughs should align, or at least that there are certain ‘landmarks’ which should align. Such an approach is 

obviously relevant when it is clear that the multiple replicate time series being studied do represent 

attempts to reproduce exactly the same sequence of events: for example, a physical movement of a 

computer mouse in straight lines between several successive fixed locations. It is not at all apparent that we 

should expect such consistent performance in perceptual time series, and hence this approach was not 

adopted, in favor of the less restricted approach of simple averaging. In other work we will analyze 

individual participant’s time series, and present participant group comparisons. 

It may be useful to note that another statistical technique, Functional Data Analysis (e.g. Ramsay 

& Silverman, 2002; Ramsay & Silverman, 2005) has been used in some studies of music performance and 

perception (Levitin, Nuzzo, Vines, & Ramsay, 2007; Vines, Nuzzo, & Levitin, 2005), again to deal with 

events patterned in time. Functional Data Analysis (FDA) is a newer technique than TSA, thus less 

extensively developed. It is more routine in FDA for standardization and registration steps to be used to 

create a reduced summary time series, and an iterative approach is normal. After this, discrete time series 

data points are converted to functions. One benefit of this is the possibility of differentiating the function, 

and thus looking at velocity and acceleration of the function, and their relationship in phase-plane plots, 

which can be highly informative with respect to some processes. The differencing process in TSA can 

provide similar velocity and acceleration information if required. This can be obtained either at the finest 

time resolution provided by the time series data, or by differentiating a locally smoothed polynomial line-

fit, analogous to the smoothing step creating the FDA function. The velocity and acceleration of acoustic or 

perceptual parameters could be viewed as aspects of ‘musical motion’. As might be expected given the 

comments above about physical movement, FDA has been particularly valuable for example in studies of 

repetitive movement patterns. It commonly also uses an initial smoothing step for each series under study, 

assuming that the time series are really representations of continuous and smooth processes, rather than 

discontinuous and abrupt ones. Music such as we study which is rapidly and irregularly changing may not 

securely fit this description; similarly in note-based instrumental music, we may have a discontinuous 
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event series, as much as an ongoing process. FDA does not generally focus so extensively on 

autocorrelation structures as does TSA, though it could, and it is not yet fully developed for multivariate 

analyses, as Ramsay and Silverman themselves note, though there are many variants of it already. FDA 

and TSA may be appropriate complementary approaches for work such as we describe.  

The time series analysis methodology developed in this paper can support ongoing work to 

understand the perception of music in terms of dynamically changing information content (Abdallah & 

Plumbley, 2009; Pearce & Wiggins, 2006; Potter, Wiggins, & Pearce, 2007; reviewed by Wiggins, Pearce, 

& Müllensiefen, 2009). In an information dynamics approach it is assumed that the predictive capacity and 

decisions of an observer concerning future events in the musical stream are continuously evolving as new 

information is assimilated into the observer’s (potentially individualistic) data probability structure. Such 

studies, though as yet lacking in empirical assessment, generally also implicitly assume that it is apparent 

what information can be extracted from each event (e.g. that pitches within equal-tempered tonal space can 

be readily categorized), and hence a probabilistic information theoretic value can be attached to features 

like a pitch event, such as the entropy or unexpectedness of the event. Information Dynamic approaches 

have so far treated events as successive and accretive, without taking regard for their relative timing, or 

directly addressing issues of temporal autocorrelation. Indeed, much of the Information Dynamics work 

has been done on monophonic isochronic music, such as Glass’ Gradus (Abdallah & Plumbley, 2009; 

Potter, et al., 2007). The Information Dynamic approach can be enhanced further by superimposed time 

series analyses, as well as by awareness that notationally- or musicologically-defined features may or may 

not be perceptible and readily categorized, and hence may or may not contribute new information. For 

example, both pitch (Pollack, 1952) and intensity (Garner, 1953) can only be precisely and reliably 

identified in about seven steps across their whole audible ranges. Hence information dynamic scales rather 

different from those by which pitch is notated (with more than 100 steps) might ultimately be needed for 

them. While we can perceive fine-grained distinctions, arguably these cannot readily be placed into more 

than seven information categories.  

One of our reasons for the choice of spectral flatness as our initial ‘global’ acoustic parameter 

related to timbre was that it has already been used as an alternative approach to determining a kind of 

‘information content’ of continuously varying sound sources (Dubnov, 2006) and in future work this aspect 

of its perceptual influence can be studied further by our developed time series approach. Our approach also 

permits the use of vectorial data (such as the mel-frequency cepstral coefficients, MFCC) by VAR time 

series analysis, and these much more complex analyses will be important tools for both future information 

dynamic and acoustic-perceptual studies.  

Time series analysis should be intrinsic to the analysis of neurophysiological data, such as those 

from EEG, and electrodermal activity studies. In some cases, techniques have been applied in depth (e.g. 

some EEG analyses) while in others they are largely still lacking (e.g. in studies of skin conductance 

responses reflecting aspects of the autonomic nervous system). Their utility in other fields, notably 

ecology, is undergoing rapid expansion at present (Zuur, Ieno, & Smith, 2007). This paper demonstrates 

several aspects of the utility of TSA in the study of acoustic/perceptual relationships. It also points to 

several future possibilities, particularly for multivariate analyses.
[1]
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