Redescription of Allolobophora Muldali Omodeo 1956 (Lumbricidae: Oligochaeta)

Murchie, William R.
REDESCRIPTION OF \textit{ALLOLOBOPHORA MULDALI}
OMODEO 1956
(LUMBRICIDAE: OLIGOCHAETA)

W. R. MURCHIE
University of Michigan Flint College

The present state of oligochaete taxonomy requires that specific diagnoses
embody rather extensive descriptions. Reliance on too few anatomical features
not only renders determination of conspecificity difficult but limits the pos-
sibilities for establishment of interspecific relationships at generic level. The
earthworm to be considered in this paper was originally described as \textit{Allobophora minima} Muldal 1952 on the basis of material collected in Hertshire, England.
The species has been renamed as \textit{Bimastos muldali} Omodeo 1956 (p. 179, footnote)
because of preoccupancy by \textit{A. minima} Rosa 1884. Gates (1958) has indicated
that the transfer to \textit{Bimastos} is presently unacceptable. He has, at the same
time raised the question of possible conspecificity of \textit{A. norvegica} Friend 1913, \textit{A.}
\textit{isenorum} Pickford 1920, and \textit{A. muldali}. Too little evidence is available to
permit a clear decision on this point. Murchie (1955, 1956) reported \textit{A. muldali}
for Michigan and presented the salient features in the life history of this species.

Muldal's original description is incomplete (Gates, 1958) and appears, in some
respects, to be inapplicable to Michigan specimens described here (extent of the
gizzard, position of last hearts, location of first dorsal pore). Inasmuch as these
characters are subject to misinterpretation, and in view of substantial similarity
on so many other points, I believe it advisable to consider the British and American
representatives identical. I should like to express my appreciation to Dr. B. I.
Roots, Royal Free Hospital School of Medicine, London, England, for notes on
British material and to Dr. G. E. Gates for his valuable suggestions on analytical
procedures.

\textit{Allolobophora muldali} (Omodeo) 1956
\textit{Allolobophora mimima} Muldal 1952: 463
\textit{Allolobophora minima} Murchie 1955: 241
\textit{Bimastos muldali} Omodeo 1956: 179
\textit{Allolobophora muldali} Gates 1958: 39

Length 40-60 mm, average 48 mm. Diameter anterior to clitellum 1.2-2.0 mm. Color-
less; clitellum opaque, whitish. Somites 87-97, average 95. Prostomium epilobous \(\frac{1}{2}\). First
dorsal pore \(\frac{1}{4}\). Clitellum on XXVII-XXXIII, extending midventrally from seta \(a\) distance
equal to \(ab\). Tuberculae pubertates absent. Tail region truncate with midventral groove
passing anteriorly at least 6 somites. First nephropore in III; here, and in succeeding somites,
at anterior edge of somite, dorsal to \(b\) distance equal to \(\frac{1}{2} ab\). Setae closely paired; \(aa = 7 ab\),
\(ab = cd\), \(bc = 4.5 ab\), \(dd = \frac{1}{4} ab\). Genital setae not modified.

Male pore on XV, between \(b\) and \(c\), slightly closer to \(c\), near top of cleft in porophore.
Tumescence of male porophore extends ventrad from setal line \(c\) to include \(ab\); covers XV and
parts of XIV and XVI. Female pore on XIV; slightly anterodorsal to \(b\). Midventral portion
of XI-XVI may be somewhat glandular.

Esophagus from \(\frac{1}{4} V\) through \(X\); well-developed esophageal pouches in \(X\). Calciferous
gland XI-XIV; lamellae 30-38 in number beginning at \(\frac{1}{2} H\). Crop in XV; esophageal valve to
gizzard. Gizzard including XVI and XVII. Typhlosole begins in XX; maximum height \(\frac{1}{4}\)
interior diameter of intestine. Typhlosole continues, with gradually diminishing height, to
terminal segments. Septa \(\frac{1}{4}\) and \(\frac{1}{2}\) somewhat thickened; \(\frac{1}{4}\) much thickened. Pharyngeal
gland masses extend into IX. Nephridia vesiculate. Hearts VI-XI; extrasophageal vessels
arise in XII; subneural trunk present. Longitudinal muscle bundles of pinnate type.

A. Diagram of frontal section through *Allolobophora muldali* showing relationship of parts of digestive tract.

1. Intestine
2. First segment of intestine which shows gizzardlike thickening of wall
3. Gizzard
4. Crop
5. Calciferous gland
6. Extra-esophageal vessel
7. Last lateral heart
8. Esophageal pouch
9. Esophagus
10. Pharynx
11. Buccal cavity

B. Section of esophageal pouch in X.

1. Minor vessel in anterior wall
2. Lumen of anterior portion of pouch
3. Epithelium of calciferous gland extending into pouch
4. Anterior extension of interlamellar sinus
5. Lumen of posterior portion of pouch

C. Portion of intestine showing typhlosole

1. Chloragogen layer
2. Dorsal vessel
3. Typhlosolar vessel

D. Portion of body wall in cross section; anterior part of segment XIII

1. Epithelial layer
2. Circular muscle layer
3. Longitudinal muscle layer, pinnate type
4. Male gonoduct with contained sperm

E. Seta a of XV

F. Cross section of calciferous gland in XII

1. Ciliated epithelium
2. Cilia
3. Lamella
4. Lumen
5. Intralamellar tunnel
6. Interlamellar sinus
Two pair of testes and funnels free in X and XI; no postseptal epididymal looping of male gonoduct. Male ducts of each side internal to muscle layers; join in XII. No atrium; glandular development of XIV, XV, and XVI external to circular muscle layer. Seminal vesicles 2 pair, in XI and XII from 1/10 and 1/8. One pair of ovaries and funnels in XIII; up to 5 ova in single strand from each ovary. Paired ovisacs in 14, from 1/4, dorsomedian to funnel. Seminal receptacles absent.

Discussion

The extraoesophageal vessels in this earthworm, as is the case with many lumbricids, might be misidentified as a pair of lateral hearts (fig. 1A–6). They arise from the dorsal vessel in XII, pass ventrad as would the hearts, but near the midlateral aspect of calciferous gland each vessel turns directly forward into segment IX where it bends dorsal and enters the esophageal region. From their point of origin, the extraoesophageals neither give nor receive branches until segment VIII is reached. Dr. Roots has indicated (personal communication) a similar condition in British specimens.

Muldal described the gizzard as extending into XVIII. Michigan earthworms of muldali do show a thickened gizzardlike wall in this region, however, the nature of the epithelium and the absence of cuticular lining indicate that this should be considered, at most, a transition zone (fig. 1A–2).

A pair of well-developed, fingerlike esophageal pouches arises from the dorso-lateral aspect of the gut in X. These project downward, nearly the full depth of the esophagus (fig. 1A–8). Frontal sections reveal each pouch to be formed of two chambers. The antermost of these (fig. 1B–2) opens dorsally into the esophagus proper; the posterior chamber communicates dorsally with the intralamellar tunnels of the calciferous gland. These chambers join at the ventral (distal) end of the pouch forming a continuous, U-shaped passage from the esophagus to the intralamellar tunnels. The calciferous gland itself extends from 1/10, without constriction, to 1/8.

Lamellae of the calciferous gland branch repeatedly so that the total count will vary depending upon the level examined (fig. 1–F); thirty-four may be taken as an average with variation from 30 to 38. Interlamellar sinuses are large (fig. 1F–6); they are continuous with circulatory elements of the esophageal pouch. Paired vessels arise in X, XI, and XII from the dorsal vessel and supply the pouch and calciferous gland.

Muldal described and figured “pits” along the ventral edge of the clitellum at 3/50–3/52, in line with setae ab. Fully clitellate worms collected in Michigan show similar depressions. These pits should not, in my estimation, be considered as related in any way with the formation of tuberculae pubertates but rather as artifacts resulting from clitellar development at the intersegmental furrows.

Whitish iridescence on the sperm funnels is construed as an indication of biparental reproduction by lumbricid worms. This condition obtains for Allobophora muldali; in addition, histological sections reveal sperm on the funnels and in the lumen of the gonoduct as well (fig. 1D–4). Copulation has been observed (laboratory cultures) and individuals bearing spermatophores collected (Murchie, 1956).

None of the cocoons seen by the writer has had more than one developing embryo. Constancy of this condition, plus possible obligatory biparental reproduction may be suggested as mechanisms acting to restrict distribution of Allobophora muldali. The specimens upon which this study is based, were taken from a substantial but restricted population located in a wooded ravine along the Huron River shore northwest of Ann Arbor, Michigan. Evidence of endemcity, on the basis of presently known populations, permits us to judge only that muldali is a soil species, requiring stable soil-moisture conditions. Intragenic affinities and geographic origin of this earthworm species, as is the case with most lumbricids, remain uncertain.
A portion of this work was accomplished during the tenure of a Summer Faculty Research Fellowship awarded the writer by the Horace H. Rackham Graduate School of the University of Michigan.

LITERATURE CITED

