Wisconsin Age Forests in Western Ohio. I, Age and Glacial Events

Goldthwait, Richard P.
Twenty-nine dates have been determined by radiocarbon analysis for buried wood materials in western Ohio and immediately adjacent areas. This is an attempt to fit known stratigraphy to the dates. Since the dates are internally consistent, their accuracy is not challenged. Interpretation of the stratigraphy of each collecting site and a careful study of the nature and condition of the former vegetation are combined in this pair of papers (Parts I and II).

Most of the study of the glacial drifts in this part of the state is under the geological program of the Water Division, Ohio Department of Natural Resources. It was begun in 1946 and has been pursued by field study from one to three months of each year and supplemented by master’s and doctorate studies at The Ohio State University. All C14 dates were determined by the University of Chicago Institute for Nuclear Studies (Arnold and Libby, 1951; Libby, 1951, 1954), the U. S. Geological Survey’s Radiocarbon Laboratory (Suess, 1954; Rubin and Suess, 1954, 1956), the Yale University Geochronometric Laboratory, the Michigan University Radiocarbon Laboratory (Crane, 1956), or Lamont Geological Observatory (Broecker, Kulp, Tucek, 1956). The botanical study of the dated wood and other buried forest litter was initiated in July, 1954, and continued in July-August, 1956, by Dr. Burns for the Ohio Water Division.

Logs have been recovered from the glacial drift of Ohio by well-digging operations during more than a century. A few old samples are retained in museums, but most are lost. Well drillers today turn in reports of buried wood at the rate of nearly one a month. With the advent of radiocarbon dating these take on new importance so all finds are being reviewed and some old samples dated. However, most samples must be found by visiting known localities, old and new, where stream or road cuts expose forest material. Thousands of excavations in till have been searched by the detailed mapping of 17 counties but these netted only 10 new localities. On the other hand, where buried wood is found there are usually a great many logs.

The 26 dated deposits in and near western Ohio fall into three groups, more or less as classified by Flint and Rubin (1955). These are (1) those which are greater than 32,000 years old and fall generally beyond the limit of accurate C14 dating. They always lie completely underneath one or more till sheets. Then, (2) a large group falls scattered over a period 16,600 to 27,500 years ago, and the materials are found within multiple till sheets. And finally, (3) a group in the upper washed drift or in bogs and lakes on top of till dates from 14,500 to 8,500 years ago. Each group is separated from the other by a void of 2,260 years or more, yet within each group nearly every one thousand years is represented by a specimen or two. The periods devoid of samples probably represent ice cover either stable or in retreat.

<table>
<thead>
<tr>
<th>C14 Date</th>
<th>Number</th>
<th>County</th>
<th>Village</th>
<th>Landmark</th>
<th>Collector*</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 40,000</td>
<td>W-152</td>
<td>Clark</td>
<td>N. Hampton</td>
<td>E. Br. Honey Crk.</td>
<td>Brown</td>
</tr>
<tr>
<td>> 37,000</td>
<td>W-415</td>
<td>Shelby</td>
<td>Kirkwood</td>
<td>Brush Creek Cut</td>
<td>Forsyth</td>
</tr>
<tr>
<td>> 34,000</td>
<td>W-96</td>
<td>Montgomery</td>
<td>Germantown</td>
<td>Twin Creeks Cut</td>
<td>Orton?</td>
</tr>
<tr>
<td>> 37,000</td>
<td>W-263</td>
<td>Franklin</td>
<td>Gahanna</td>
<td>Rocky Fork Cut</td>
<td>Goldthwait</td>
</tr>
<tr>
<td>> 32,000</td>
<td>W-100</td>
<td>Elgin, Ont.</td>
<td>Port Talbot</td>
<td>L. Erie bluff</td>
<td>Dreimanis</td>
</tr>
<tr>
<td>> 33,000</td>
<td>L-185A</td>
<td>“</td>
<td>“</td>
<td>“</td>
<td>Dreimanis</td>
</tr>
<tr>
<td>> 38,000</td>
<td>L-217A</td>
<td>“</td>
<td>“</td>
<td>“</td>
<td>Dreimanis</td>
</tr>
</tbody>
</table>

*In published C14 lists the man who submitted the sample is listed; here the original collector is noted if possible.

These five scattered localities (circle spots on fig. 1) are similar in one way. Each one represents a separate interstadial bed—not material swept up in till, as were most mid-Wisconsin logs. Each one lies below two to four thick till layers. At Port Talbot (W-100, etc.) there is a gyttja containing pollen of jack pine, spruce, larch, and birch (Dreimanis, 1953, p. 1414) with two widespread till sheets over it. At Kirkwood (W-415) thin peat lies on leached and reduced gravel soil 3 to 5 feet deep. At Gahanna (W-263) spruce wood is in cross-bedded (late glacial?) sand overlain by two distinct tills. At Germantown (W-96) the bed is peat 3 to 20 feet thick, which continues at 30 to 90 feet depth from well to well for as much as one and two miles away. Until about 1900 this peat was visible lying on two feet of blackish soil, leached, and grading to gravels with ghost dolomite pebbles below—evidently a gley soil. Based on similarity of development and condition, it is tempting to say that these four represent one and the same interstadial time; until shown otherwise that is the simplest hypothesis.

Two of these sites yield only trees indicating moist, cool climate (pp. 220–21). However, the vegetation in North Hampton (W-152) lacustrine beds and Germantown peat suggests these were warmer (pp. 220–21). The superposition of the till
is in question at North Hampton, too, since it is not exposed above the lacustrine beds, but only over sand 70 feet north and on higher slopes. At the Germantown locality (W-96), Orton (1870) quotes nonexpert identification of ash, hickory, and sycamore wood with grape and beech leaves. These two sites mark distinctly warmer conditions which might stem from an earlier part of the same interglacial time, or from an earlier interglacial time.

W-263 (>37,000)
Franklin Co., Gahanna
Rocky Fork Crk.
SE 1/4 SW 1/4 Section 2

2½'–4’ soil, Miami A, B
10–15’ till, brown, sandy
NNE source, 28–44% ss, sh sandstone boulder pavements
14–25’ till, gray, silty
WNW source, 33–49% dolomite
12–21’ sandy gravel, outwash?
wood 1’ from top
upper: 4’ rusty sand, cross bedded
middle: coarse, cross bedded, gravel
bottom: sand
9–18’ till, blue gray, clay rich
NW source, 22–33% ls
20’ bedrock, red, Bedford shale
west end only

W-100 (>32,000), L-217A (>38,000) etc.
Elgin (Ont.)
Port Talbot

2’ soil
19’ clay, lacustrine
8’± till, clay rich, pale brown
local SE source, 5–9% Pre-Cambrian
12’ clay, lacustrine
45’± till, sandy, pebbly, olive gray
(wood, 12’ below top at Plum Point)
NE source, 17–25% Pre-Cambrian
½’ gyttja, W-100
silt, calcareous
(sared clay and till)

*Layers in parentheses not visible in the last decade.

W-96 (>34,000)
Montgomery Co., Germantown
Twin Creeks
SE Section 18

8’ soil, Miami A, B, C
18–29’ till, mostly gray
5–6’ till, yellow, lenticular
silt lenses along outcrop
20–40’ till, blue gray
(other yellow tills described by Leverett)

(0–20’ peat, saucer shaped lens 225’ long, compressed logs)
(2’ soil, black top, ghost dolomites leached)
(10’+ gravel, calcareous)

W-152 (>40,000)
Clark Co., N. Hampton
Marquaart Rd. at St. Paris Rd.

E. Branch Honey Crk.

0–36’ silty clay till on slope
3–5’ medium coarse sand
poor laminations
2½’ fine sand and silt
sand lenses
5 layers of leaves and twigs
½’ medium coarse sand
3’+ limestone bedrock

Two of these localities rest on significant gley soils. Each is developed in gravel, and pebbles are well rotted, but each soil is thin and only weakly acid. There is no sign of long interglacial time as is implied by this typical Sangamon soil in a ditch at New Martinsville, Clinton Co.:

2½’ silt, loess, Wisconsin with weathered profile, brown
3½’ clay, humic gley soil, gumbotil, gray, acid
2½’ weathered till, yellow, leached
1’+ till, calcareous, gray
Since the capping peat is present on three of these dated sites, there was no mass removal of the A zone by ice here, and we are forced to the conclusion that this was a mostly cool moist interval of perhaps 5 to 15 thousand years duration.

THE AGE ARGUMENT

Both the absolute age and the glacial stage name to be applied to these lower glacial gravels and tills have been questioned. On the one hand, there are dates on the earliest known Wisconsin materials from Illinois to the west which suggest the Farmdale is 22,000 to 25,000 years old, or the Tazewell is 16,000 to 22,000 (Horberg, 1955; Ruhe and Scholtes, 1955). No matter which assignment is more nearly correct, these do not account for a Wisconsin substage glaciation before 30,000 years ago. On the other hand, dating of high lake levels in southwestern United States, dating of soils in the Rocky Mountains (Richmond, 1955), dating of glacier advances in Alaska (Karlstrom, 1957), dating of the cooler sea floor layers (Ericson and Wollin, 1956), and many European "Wurm" datings indicate two cold periods in post Sangamon time, the earlier of which is more than 35,000 or 40,000 years ago.

The crucial questions in Ohio are: How long a time is represented by the buried soil? Are the buried soil and associated layers distinctive enough to be recognized as one common soil everywhere, or do they represent several soil-forming episodes? Only the most brief summary of ten seasons of stratigraphic study is possible here.

The first outstanding fact is that from Columbus to Circleville, down the Scioto Valley, east into Licking County, west around London, and down the Mad River-Miami Valleys from Logan County to Butler County there are 1,200 square miles where every well and many exposures reveal till over gravel (stippled areas on fig. 1). The till-smeared rolling surface near Bellfontaine clearly expresses kames and kettles underneath; half-exposed kames and eskers are known southeast of Columbus and Circleville. Where wells go deep enough, thin till layers sometimes occur in the gravel and till is usually present below it, but closely related in time. So many hundreds of well records are available at the Water Division that the general continuity of the gravels in the till "sandwich" can hardly be questioned. These are traceable in wells to the gravels which bear wood over 37,000 years old at Gahanna. Clearly the ice came once, leaving lower till, and then poured out gigantic outwash deposits as it left, for these buried esker, kame, and outwash forms surpass anything elsewhere in Ohio glacial drift. Then ice returned for its main and final call of several pulsations shown by several upper tills, well dated at 24,600 to 16,600 years ago (next section).

The second pertinent observation is that at more than 45 separate actual exposures (in the areas of dots on fig. 1) there is a buried "soil" on the gravel, consisting of 0 to 4 feet of leached and red-clay-enriched upper gravel. It is horizontally extensive, but discontinuous, right under the upper calcareous tills. Dozens of soils experts and many geologists have inspected these; the consensus is that many of them are genuine buried soils. If some are, all may be. Extensive laboratory tests are being run and will be reported later, but the depth, clay content and texture are very similar to that for modern postglacial Fox soils in gravel. Only at the Sidney cut (W-188) found by Forsyth is this underlying soil developed in till. Here it is leached 1½ to 4 feet and is much like some Miami soils in clay-content, acidity, structure, and depth. Forsyth has shown that it differs markedly from the Illinoian soils (Forsyth and Larocque, 1956). While these might be truncated by later ice advance, they still do not resemble lower parts of Sangamon soils in southern Ohio (p. 211). The similarity of stratigraphic position of all these soils, their thinness, the like gravels in which they are developed and the continuity of the gravels suggest that these represent one and the same period. The soils do not demonstrate a long interglacial period and circumstantial
evidence favors the simplest hypothesis that they represent one interstadial period occurring during 5 to 15 thousand years between two long major glacial advances of the Wisconsin stage.

Another line of evidence tests this hypothesis. In the Hocking Valley, Kempton (1956) found a terrace level, traceable for 40 miles. It is well above known Wisconsin terraces (4' deep Fox soils), but well below Illinoian terraces (15' deep Hocking soils), and it can be identified by its high count (38%) of clastic local pebbles, and its 6 to 8 ft leached brown soil. The lower Wisconsin terrace, on the other hand, is correlated with the 20,000 year old drift at Lancaster, Ohio (Conley, 1956), so this older higher post-Illinoian terrace must be "early" Wisconsin.

Mid-Wisconsin Forests

<table>
<thead>
<tr>
<th>Number</th>
<th>County</th>
<th>County</th>
<th>Village</th>
<th>Landmark</th>
<th>Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-177</td>
<td>Elgin, Ont.</td>
<td>Tyrconnell</td>
<td>Plum Point</td>
<td>Dreimanis</td>
<td></td>
</tr>
<tr>
<td>L-185B</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>W-71</td>
<td>Cuyahoga</td>
<td>Cleveland</td>
<td>Clev. S. & G. Co.</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Y-449</td>
<td>Franklin</td>
<td>Columbus</td>
<td>4th St. at Long</td>
<td>Goldthwait</td>
<td></td>
</tr>
<tr>
<td>W-188</td>
<td>Shelby</td>
<td>Sidney</td>
<td>B & O RR cut</td>
<td>Forsyth</td>
<td></td>
</tr>
<tr>
<td>W-356</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Rubin</td>
<td></td>
</tr>
<tr>
<td>W-414</td>
<td>"</td>
<td>Kirkwood</td>
<td>Brush Crk.</td>
<td>Forsyth</td>
<td></td>
</tr>
<tr>
<td>W-127</td>
<td>Pickaway</td>
<td>Harrisburg</td>
<td>U S Rt. 62</td>
<td>Frye, J. (?)</td>
<td></td>
</tr>
<tr>
<td>W-88</td>
<td>Licking</td>
<td>Newark</td>
<td>Kaiser I.A Co.</td>
<td>Mahard</td>
<td></td>
</tr>
<tr>
<td>W-188</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>W-37</td>
<td>Montgomery</td>
<td>Southern Hills</td>
<td>Hole's Crk.</td>
<td>Goldthwait</td>
<td></td>
</tr>
<tr>
<td>C-508</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>W-92</td>
<td>"</td>
<td>"</td>
<td>Bull Run</td>
<td>Goldthwait</td>
<td></td>
</tr>
<tr>
<td>C-456</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>W-448</td>
<td>Clinton</td>
<td>Cuba</td>
<td>Paris Rd.</td>
<td>Sanderfur</td>
<td></td>
</tr>
<tr>
<td>W-91</td>
<td>Ross</td>
<td>Chillicothe</td>
<td>Biers Run</td>
<td>Goldthwait</td>
<td></td>
</tr>
<tr>
<td>W-331</td>
<td>Ross</td>
<td>Anderson</td>
<td>Anderson Run</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Y-450</td>
<td>Butler</td>
<td>Darlington</td>
<td>Fourmile Crk.</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

(Those in parentheses considered less reliable for calculations.)

Stratigraphy.—These 14 sites (triangle spots on fig. 1) have many features in common. The logs are all in till, mostly near the base of a till layer, except W-71 in varved proglacial clays. There are bedded sand or gravel lenses with limonite-hematite staining in the till near every group of logs. These masses often have low dips or are contorted, suggesting that they were picked up frozen and twisted. The logs themselves are bent and in some cases doubled back like oxbows indicating powerful differential twisting within the ice-till mass itself. Only casual measurement of pebble orientation has been attempted and these indicate a strong till fabric. In every case except two (W-188 and W-177) the discovery log led to the finding of many more pieces nearby; in other words, logs come in groups, Part II will show that the pieces represent one uniform kind of cold-weather forest.

From these facts of situation, it is highly probable: (1) that these record the last major glacial *advance* with pulsations across western Ohio; (2) that here and there the ice pushed into extensive patches of living forest; (3) that these forests developed in cool pro-glacial climate like north central Ontario; (4) that the same ice picked up masses of already sorted sand and gravel, so the forests were closely associated with outwash materials now found beneath the upper tills; and (5) that the ice squeezed and contorted the till, gravel and logs by differential shearing motions or fluxing currents of ice.

The specific stratigraphic situation varies from site to site. The group of 5 simplest sites lie under gently undulating smooth till surface mapped as ground
moraine. The wood occurs near a contact with a gravel lens. Inasmuch as the wood was alive when picked up these represent the time of last recorded ice advance at these spots.

W-91 (18,050 ± 400)
Ross Co., Chillicothe
Biers Run,
½ Mile NW of US 35

8' soil, Miami A, B, C
in bank above floodplain

10-25' till, gray, compact where creek cuts high bank
otherwise, 2-3' sand, alluvial,
silty, where creek has migrated

3-7'+till, gray, compact
numerous sand lenses to 20' long
laminated, some contorted
limonite crusted logs (over 200
seen) some against gravel
twisted black pods of forest litter

Y-449 (23,000 ± 250)
Franklin Co., Columbus
2 blocks NW of Capitol
4th St. at Long St.

(5' = gravel)

Y-450 (16,560 ± 230)
Butler Co., Darftown
Fourmile Creek cut
SE 1/4 SE 1/4 Section 31
Lane's Mill (and 1/2 mile NE)

9' soil, except to NE on low bank under
floodplain, 5-8' silty gravel instead

Four other sites involve wood in thick till lying on a buried soil or vegetation mat. The Sidney railroad cut log (W-188) is right on an excellent leached and clay-enriched soil where it probably grew. At Oxford (W-92), there are 6 inches of leached tan sands or reduced blue green lacustrine clays under a very thin layer (or layers) of leaves, twigs, insect wings, etc. At Kirkwood (W-414) and at Plum Point (W-177) the tills containing logs are traced to where they overlie older peat or gyttja over 32,000 and 37,000 years old. (Actually Dreimanis [1953, p. 1414] describes 2 tills separated by lacustrine clay, and logs are in the lower one, so the last advance was multiple or pulsating in the Erie Basin.) Thus, it seems most likely that the peat and soils are considerably older on the average than this last glaciation, and the ice merely picked up the last live trees to grow on that surface. Thus the underlying peat and soil is identical with that discussed already under “Early Wisconsin.”
Finally, with this middle Wisconsin group of dates are four with different stratigraphy because they all occur in slightly higher hummocky belts mapped as end moraine. (W-71. This site is different also. These proglacial lake beds covered by till are described in White, [1953].) At Southern Hills (W-37) and at Westchester (W-304) the till bearing the wood is a continuous layer, compact, and blue gray, but above it are several lumps or lenses of other till, oxidized pale brown and interlayered with silty bedded gravels 10 to 40 feet deep. The lower till layer with wood is interpreted as plastered on beneath the last advancing ice; the overlying hodge-podge of till and poorly sorted gravels without wood is interpreted as a retreatal halt decades or centuries later. However, at Anderson Run (W-331) the masses of tangled wood lie between underlying compact silty gravels and overlying till. At Cuba (Y-448) on the outer Wisconsin moraine the few sticks come from 13 feet down in a surface excavation for a farm pond in till. In these two cases the ice last pushed over any earlier deposits of these end moraines.
Advance of the glacier.—When these Wisconsin C14 dates are plotted on the map of Ohio (fig. 1), it becomes evident that they form a consistent sequence from old at the north to young in the south. As the first C14 dates began coming in one hesitated to jump to this conclusion in view of the several potential errors in the radiocarbon method (such as the assumption that C14 content of trees 20,000 years ago was the same as that today). Each new date fitted the picture until the sequence seems firm beyond probable limits of laboratory error. Even if absolute dates are assumed incorrect, we must conclude that these dates show the gradual spread of the last ice southward. This leads to two conclusions contrary to traditional thinking: (1) The till sheets of the ground moraine in western Ohio are deposited in the main by advancing ice, (not retreating ice). (2) Between 24,600 and 16,600 years ago the retreats in Ohio, if there were any, were short-lived. The biggest gap in chronological record is between the Lake Erie region 24,600 years ago and Central Ohio 23,000 years ago; this may well involve ice edge pulsations, but such advances did not reach Shelby and Franklin counties where trees grew until 22,000 and 23,000 years ago.

The rate of average advance may be calculated in round figures. Only the average of many figures covers time span sufficient to disregard the probable error, but each individual segment between pairs of C14 dates has been figured to arrive at the most reliable average. Only dates in the same ice lobe have been compared and distances were measured along the line of average ice flow, which is fairly well known from striae, grooves, crag-and-tail, some 500 stone counts in till, and a few fabric measurements.
Disregarding unknown but possible short retreats falling in the C¹⁴ time gaps, the overall rate was an average advance of 350 feet per year through northern Ohio and 83 feet per year in the southwestern quarter of Ohio. Individual values ranged from 223 to 481 feet per year in northern Ohio and 41 to 204 in southwestern Ohio. The average rate in southwestern Ohio is influenced strongly by the low age determination for Y-450 which may simply represent one of the oscillations of the ice near its maximum between 20,500 and 16,600 years ago. These oscillations correspond in C¹⁴ time scale to the Bloomington Moraine and other later moraines in Illinois.

LATE WISCONSIN FORESTS

<table>
<thead>
<tr>
<th>C¹⁴ Date</th>
<th>Number</th>
<th>County</th>
<th>Village</th>
<th>Landmark</th>
<th>Collector</th>
</tr>
</thead>
<tbody>
<tr>
<td>14,300±450</td>
<td>W-198</td>
<td>Williams</td>
<td>Edon</td>
<td>Ohio Turnpike</td>
<td>Rubin</td>
</tr>
<tr>
<td>12,380±370</td>
<td>W-57</td>
<td>Steuben, Ind.</td>
<td>Fremont</td>
<td></td>
<td>Wayne</td>
</tr>
<tr>
<td>13,020±400</td>
<td>W-65</td>
<td></td>
<td>"</td>
<td></td>
<td>Wayne</td>
</tr>
<tr>
<td>12,600±600</td>
<td>M-350</td>
<td></td>
<td>"</td>
<td></td>
<td>Zumberge</td>
</tr>
<tr>
<td>13,600±500</td>
<td>W-33</td>
<td>Cuyahoga</td>
<td>Cleveland</td>
<td>Canal S & G Co.</td>
<td>White</td>
</tr>
<tr>
<td>12,920±400</td>
<td>W-430</td>
<td>Erie</td>
<td>Pakertown</td>
<td>Turnpike at Rt. 4</td>
<td>Forysth</td>
</tr>
<tr>
<td>12,500±250</td>
<td>Y-240</td>
<td>Sandusky</td>
<td>Bellvue</td>
<td>NW¹/₄ Sec. 10</td>
<td>Campbell 1953</td>
</tr>
<tr>
<td>(8,420±400)</td>
<td>M-66</td>
<td>Madison</td>
<td>W. Jefferson</td>
<td>Orleton Farms</td>
<td>Baby</td>
</tr>
<tr>
<td>(8,460±400)</td>
<td></td>
<td></td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,600±500</td>
<td></td>
<td></td>
<td>"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,513±500</td>
<td>C-526</td>
<td>Erie</td>
<td>Castalia</td>
<td>Medusa Cem. pit</td>
<td>Goldthwait</td>
</tr>
</tbody>
</table>

(Those dates in parentheses are considered less reliable.)

Surface deposits.—Two of these "young" dates come from deposits associated with the Wabash Moraine. They lie on top of all till involved in the moraine and so post-date the last ice there. At Fremont in Steuben Co., Indiana (W-57, 65, M-350), the material is peat almost directly on the upper till. Is this sandy calcareous gravel overlying it deposited by meltwater from ice? Many geological visitors agree that it is glacial gravel, but that it may be redeposited in this swale-lowland situation cannot be denied. Therefore, it represents the minimum date for ice at Wabash Moraine, but it is likely it formed soon after the ice since it is at the base of several post-glacial layers. In the second case, Edon (W-198), the problem is similar. The wood is in lacustrine silts on high topography on top of the moraine. The silts are local, suggesting a small pool in an ice block hole. Thus, the readvance to Wabash Moraine dates from about 15,000 years ago, or, in any case, more than 14,300. This may well correspond to Cary stage or a part of what is now called Cary in Illinois.

W-57, W-65, M-350 (12,380 to 13,020)
Indiana, Steuben Co.
Fremont
NE¹/₄ NE¹/₄ Section 2

W-198 (14,300±450)
Williams Co., Columbia or Edon
Ohio Turnpike and Rt. 49
NW¹/₄ NW¹/₄ Section 3

1' muck, gray black
or (3¹/₄') clay
2' sandy gravel, brown top
leached, ghost pebbles
2' sand, calcareous, brown clay seen
at base
½' peat, sandy matrix, wood

3' soil, brown, C zone, in silt
3' silt, stratified
½' silt-clay with wood fragments
3' silt-fine sand, interbedded
laminae

8-15' till, gray, clay-rich
½-1½' clay, plastic, gray
3' sand, gray
Three very closely spaced dates come from samples under well-established Lake Whittlesey deposits. Beneath each sample is till, probably the clay-rich till of a "late Cary" advance, (Winslow, White, and Webber, 1953, pp. 38-41). At Cleveland, near the Cuyahoga River (W-33), the sample lies right on the till at 690 feet elevation, well below the Whittlesey level. This represents the water rise at the end of Lake Arkona recorded here by 10 feet of overlying sandy silts. Its date is so old (13,600 ±500) as to crowd the intervening events after Wabash Moraine; did the deposition of Ft. Wayne Moraine, Defiance Moraine, and 3 stages of Lake Maumee take only 1,400 years? The Bellevue sample (Y-240), from a well, was simply in the higher beach sand—driftwood at the 735 foot lake level. Parkertown (W-430) is an intricate series of clay, sand, and humus layers right on the last till but underlying a good shingle beach of Lake Whittlesey (elevation 710 feet). These agree very well that Lake Whittlesey existed about 13,000 years ago.

One lake-controlled specimen falls at a much later date. It comes from the famous Castalia marshes (C-526) in a lower forest layer now explored over hundreds of acres (Dashnowski, 1912; Campbell, 1955). This is the only C¹⁴ site where the stumps are clearly rooted in place, so the underlying poorly laminated clays represent the higher (above 630 feet) glacial lake stages ending with Lake Warren (II?). Sands on those clays may represent slow dropping of the shore. Then the trees grew, probably during Lake Lundy time when ice still blocked the St. Lawrence River, but the edge was far away in New York and well up in Ontario. Calcareous shallow pools began to cover things up with marl, and travertine marshes alternated with periods of forest.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-430</td>
<td>Erie Co., Parkertown</td>
</tr>
<tr>
<td>C-526</td>
<td>Erie Co., Castalia</td>
</tr>
</tbody>
</table>

The final date (W. Jefferson, M-66) is typical of many kettle holes and ponds in west central Ohio. This is the only one studied in detail recently (Goldthwait, 1952; Sears and Clisby, 1952), so it is the only one dated. Like most others, it shows that an early period of open shallow pool (marl on the till) ended about 9,600 years ago when postglacial forests encroached and swamp vegetation became dense. As dated in other states, these were the declining days of the last (Valders, post Allerød) ice advance.
REFERENCES CITED

—. 1954. Chicago radiocarbon dates V. Science 120: 733-742. (C-893, p. 735).

