Some Constants of Toad Fat

Fromm, Fritz

The Ohio Journal of Science. v58 n3 (May, 1958), 161-162
http://hdl.handle.net/1811/4533

Downloaded from the Knowledge Bank, The Ohio State University's institutional repository
SOME CONSTANTS OF TOAD FAT

FRITZ FROMM

Catholic University of Puerto Rico, Ponce, P. R.

The giant toad, *Bufo marinus*, has become one of the more abundant amphibian species of Puerto Rico since its introduction there more than 30 years ago. It seemed, therefore, the suitable material for a continuation of the author's investigation of amphibian and reptilian fats (Fromm et al., 1954). The pooled fat bodies or livers of animals of both sexes were used either immediately after dissection of the toad or after several days' storage in the freezer. The organs were freed of all adhering tissue, washed free of blood with distilled water, ground with plaster of Paris, and extracted with ethyl ether in a Soxhlet apparatus. Both fats were semisolids, the adipose fat being a cream-colored, the liver fat a brown substance.

The fat constants were determined by the methods used in the study of caiman fat (Fromm et al., 1957), but the saponification value of the liver fat was obtained by Kehren's semimicro method (1952). The amount of nonsaponifiable matter was found by petroleum ether extraction of the saponified fat as described in the work on caiman fat, but for comparison with earlier results (Fromm et al., 1954), ethyl ether extraction of the saponified whole liver was also applied.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Yield % of Organ</th>
<th>M. P. °C.</th>
<th>n<sub>25</sub></th>
<th>Saponification Value</th>
<th>Iodine Value</th>
<th>Nonsaponifiable % of Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat Body</td>
<td>67.3</td>
<td>33</td>
<td>1.475</td>
<td>205.3</td>
<td>58.0</td>
<td>0.74</td>
</tr>
<tr>
<td>Liver</td>
<td>7.3</td>
<td>32</td>
<td>1.465</td>
<td>192.4</td>
<td>40.9</td>
<td>1.12</td>
</tr>
</tbody>
</table>

The results are summarized in table 1. The nonsaponifiable matter of the liver fat amounts to 0.06 percent of the liver weight. Previously, it was reported that the nonsaponifiable of the toad liver was 3.2 percent of the liver weight. It was already pointed out at that time (Fromm et al., 1954) that this value was probably too high and caused by ethyl ether extraction of soaps and other material from the saponified liver. This was confirmed by saponifying an equal amount of the same pooled livers as used for the preparation of the oil and extracting it with ethyl ether. The supposed nonsaponifiable in this case amounted to 2.4 percent of the total liver weight, but it was only partially soluble in petroleum ether and gave on repeated resaponification and extraction smaller and smaller amounts of nonsaponifiable. Unfortunately, an accidental loss of the material prevented the final determination of the nonsaponifiable in this way.

The high melting point of both fats is interesting as an effect of the tropical habitat on fat composition and confirmation of the Henrique-Hansen law (Bělehrádek, 1935). The relatively low iodine value corresponds to this high melting point and contrasts with the few data reported for toad and frog fat collected in the temperate zones of Asia, Europe, and South America, and summarized in table 2. It is also worth noticing that analogous to the observations

1Present address: Chemical Abstracts, Columbus, O.

on caiman and subtropical turtle fat the iodine value of the liver oil is definitely lower than that of the adipose fat, while Klenk (1933a) found approximately the same iodine value for the adipose and liver oil of *Rana temporaria* in the temperate zone. Further investigation will be needed to see if this unexpectedly low degree of unsaturation of the liver oil is another effect of the Henrique-Hansen law. The other constants are of the same order of magnitude as those reported for reptiles (Fromm *et al.*, 1957) and for the fat of other toads and frogs, cf. table 2.

The help of Mr. Gilberto Pesquera, University of Puerto Rico, Rio Piedras, and Mrs. Nereida Planell, Central High School, Santurce, Puerto Rico, in supplying the animal organs is gratefully acknowledged. Thanks are also due to Miss Joan E. Wu, Mount Mercy College, Pittsburgh, Mr. Heriberto Batiz, Mr. William Bracer, and Miss Edicta Franco, Catholic University of Puerto Rico, for their help in some experiments.

Table 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Organ</th>
<th>Yield % of Organ</th>
<th>M. P. °C</th>
<th>Saponification Value</th>
<th>Iodine Value</th>
<th>Nonsoap. % of Fat</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bufo arenarum</td>
<td>Fat</td>
<td>---</td>
<td>---</td>
<td>198</td>
<td>82.6</td>
<td>0.58</td>
<td>Cattaneo and Sutton (1952)</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>---</td>
<td>2.5-13</td>
<td>1.4660<sup>ae</sup></td>
<td>197.8</td>
<td>0.47</td>
<td>Tsukamoto and, Ohtaki (1941)</td>
</tr>
<tr>
<td>B. melanostictus</td>
<td>Fat</td>
<td>---</td>
<td>---</td>
<td>1.4647<sup>ae</sup></td>
<td>181.3</td>
<td>7.94</td>
<td>Tsujimoto and, Kobayashi (1921)</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. bufo japonicus</td>
<td>Fat</td>
<td>75</td>
<td>-5</td>
<td>1.4733<sup>ae</sup></td>
<td>192.77</td>
<td>135.38</td>
<td>Klenk (1933b)</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rana catesbeiana</td>
<td>Fat</td>
<td>4</td>
<td></td>
<td>1.4774<sup>ae</sup></td>
<td>194.78</td>
<td>134.24</td>
<td>Takasaki and Yamamoto (1930)</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. temporaria</td>
<td>Fat</td>
<td>88-93</td>
<td>---</td>
<td>---</td>
<td>118-120</td>
<td>---</td>
<td>Klenk (1933a)</td>
</tr>
<tr>
<td></td>
<td>Body</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. temporaria</td>
<td>Liver</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>115-117</td>
<td>6.7-6.9</td>
<td></td>
</tr>
</tbody>
</table>

LITERATURE CITED

