Testing the Accuracy of Information on the World Wide Web Using the AltaVista Search Engine

Tschera Harkness Connell is serials coordinator, Serials & Electronic Resources Department, Ohio State University Libraries

Jennifer E. Tipple is reference librarian, Dayton and Montgomery County Public Library, Ohio.

In this study we examine the accuracy of the World Wide Web for answering general ready-reference questions. We used the search engine AltaVista for this study. We gathered ready-reference questions over a two-week period and then searched on the Web for answers. We assigned accuracy values to each Web site retrieved, based on its relation to the required answer criteria. The average number of duplicate sites retrieved per search was 4.02. The percentage of dead links returned was 12.4 percent. The average number of times per search that a search was reworded and reentered (per search) because the first search retrieved no hits, was 1.77. Lastly, if an answer was found at all, there was a better chance of it being correct or mostly correct than wrong or mostly wrong.

We live in the "Information Age" in which words such as Internet, World Wide Web, and Information Superhighway are heard daily, whether in conversation or via the media. Even so, many people are unsure what these terms are, much less how they could benefit from their use. However, a growing number of individuals are realizing the need to learn the skills necessary to use the Web and the Internet, not only to advance in their jobs, but also to function in tomorrow's world.

While they have become virtually interchangeable in our vocabulary, the Web and the Internet are very distinctive entities with different functions. The Internet is a "vast, worldwide network of computer systems that enables users to communicate with one another via electronic mail, via Telnet (a process that permits users to log-in to a remote computer), and via the File Transfer Protocol (also called FTP, which allows users to transfer information on a remote host to their local computer)."¹ The Internet is command-driven and does not lend itself to graphical displays, such as photographs, illustrations, and charts.

On the other hand, the World Wide Web (also known as WWW or the Web) is an "interlinked collection of documents or Web sites that reside on a server computer."² It is built around a hypertext system that provides links to other Web sites, which can be accessed randomly by clicking on the selection with the mouse.³ In other words, the Web has been designed to be intuitive and graphical, thereby making the Internet less complicated to use. Although many people have heard of them only recently, the concepts for the Internet and the Web are not recent phenomena.
The Internet originated in the 1960s as a decentralized governmental tool that could be used to reroute messages in the event of a nuclear attack. Research on the Internet continued, and in 1989 the idea of the World Wide Web was conceived at the CERN Research Center in Geneva. The scientists in Switzerland implemented their ideas by developing the technology needed to make the hypertext system possible. Since then, both the Internet and the Web have evolved into informational tools that can be accessed by anyone, virtually anywhere in the world. Not only can anyone access them, but any person, organization, or business with the proper computer hardware and software can also publish material on them, regardless of content. As a result, the validity and accuracy of information being disseminated through the Internet and the Web have been questioned.

Librarians in particular have speculated about the accuracy of this information. Healey noted:

The veracity, accuracy, and objectivity of materials is a classic problem for libraries, but the expense of publishing, combined with an extensive reviewing system and the relatively "fixed" nature of printed materials all help librarians to find quality materials, and avoid shoddy, biased, or misleading works. With the Web (and with the Internet as a whole), this system is not yet in place. Precisely because it is so easy to publish a document on the Web, and so easy to change a document that is already published, librarians will have to evaluate Web resources to assure the quality of the information provided.

In the context of the Internet, the traditional methods of evaluating materials (peer review, meeting collection development criteria, and identification of an authoritative or reputable publisher) do not work. As a result, many librarians have developed guidelines that can be applied to evaluate Web site content. Typical criteria included in these guidelines are accuracy, timeliness, authority, accessibility, and objectivity. Of these criteria, we address the accuracy component of evaluating resources on the Web.

A reference encounter with a high school student needing information about music in the early periods of Japan prompted this research. When it was suggested that the Web would be one source of information, the student indicated reluctance, explaining that he had failed an earlier assignment on slavery in Africa for which he had used information attained via the Web. In that experience, two different sites had supplied a sufficient amount of information on his topic, but it was only when he received a poor grade and spoke to his teacher that he learned the information gained from the Web was inaccurate. The student's experience led the authors to an examination of the accuracy of information found on the Web.

Literature Review

It is generally recognized that the Internet and the Web can be precarious reference sources if care and scrutiny are not exercised. In an article titled "Using Internet for Reference," Basu reported on a survey of Internet use by academic librarians in New Jersey. He commented that librarians feel that one barrier to using the Internet for reference is "the unknown nature of the information retrieved." Brandt discussed accuracy in an article on evaluating information on the Internet. He stressed the important role that evaluation has in dealing with Internet information because of the "uneven quality of [it]." Ertel also wrote about the integrity of data from the Internet. She stated, "Much of the information on the Internet is fraught with
inaccuracies, errors, and incorrect data. Validating the information available on the Internet is a critical task.10 Richard Jurek agreed and advised Internet and Web users to be infocritical.11

There are numerous articles offering tips for evaluating Web sites.12 Three that are representative of criteria proposed for evaluation, and that were used extensively for the development of the evaluation tool employed in this research, are discussed here. The first of these, "Consolidated Listing of Evaluation Criteria and Quality Indicators," by Wilkinson, Bennett, and Oliver of the Department of Instructional Technology at the University of Georgia, presented and discussed eleven criteria by which one may determine the validity and reliability of a particular Web site:

1. Site Access and Usability (i.e., gaining access to a site so that evaluation may take place)
2. Resource Identification and Documentation (i.e., locating the document within the site and gathering descriptive information about that document)
3. Author Identification (e.g., name, professional or institutional affiliation, position title or academic rank, e-mail address)
4. Authority of Author (e.g., expertise or publishing record in topic area)
5. Information Structure and Design (i.e., document structure, including whether or not accepted instructional design standards are followed)
6. Relevance and Scope of Content (i.e., meets the user's needs in terms of type and depth of material)
7. Validity of Content (i.e., the confidence one has in the information within the document)
8. Accuracy and Balance of Content (e.g., biases or inaccuracies, obvious errors or misleading omissions, presence or absence of multiple points of view, evidence of careless or hasty preparation, such as spelling or grammatical errors)
9. Navigation within the Document (i.e., usability and interactivity of the material)
10. Quality of the Links (i.e., usefulness and clarity of links)
11. Aesthetic and Affective Aspects (i.e., the design of the site in terms of graphics, readability, and use of creative elements).13

Hope Tillman, director of libraries at Babson College in Babson Park, Mass., produced another useful guide, presented in the context of a discussion of both vanity and scholarly publishing as they apply to print mediums and their electronic counterparts. Tillman emphasized that because anyone can publish information on the Internet and the Web, the accuracy and reliability of the data can be compromised. Her list of basic criteria for evaluation included the authority of author, the stability of the information, the presence of stated criteria for inclusion, and the appropriateness of format.14

Robert Harris, an English professor at Southern California College in Costa Mesa, wrote the third evaluation guide. He, too, made the point that "There is an extremely wide variety of material on the Internet, ranging in its accuracy, reliability, and value. Unlike most traditional information media (books, magazines, organizational documents), no one has to approve the content before it is made public."15 He recommended that the information seeker decide what type of information is being sought--facts, opinions, reasoned arguments, statistics, etc. Once the user makes this decision, he or she will find it significantly easier to screen Web sites. Harris suggested that the user look for evidence of credibility. Why is this source worth quoting? What makes it believable? He noted that qualities to consider include the reputation of author or source, scholarliness, thoughtfulness, and use of evidence or documentation. He presented eight
" evaluative tests" that the information consumer should perform on data found on the Web and Internet. Harris's tests involved examining the information for:

1. evidence of quality control, such as professional editing or a peer review process;
2. sense of audience and purpose (i.e., for whom is the source intended and why?);
3. timeliness (i.e., is it too old or too current?);
4. reasonableness (e.g., What is the tone of the document? Is the information organized coherently?);
5. the presence or absence of negative indicators. (e.g., does the language of the document contain inflated claims, conflicts of interest, lack of corroboration, poor grammar, or misspelled words?);
6. objectivity (e.g., Are the biases of the author controlled? Does he/she express opinions?);
7. world view (e.g., Do the author's views of the world slant his/her writing?); and
8. documentation or bibliography (i.e., Can the information in the document be verified with another source?).

Evaluating reference sources and services is nothing new. Three articles have particular significance for the present study. The first is important because of its identification of a set of core print sources that can be used to answer many ready-reference questions. The second two are important because of their methodology, specifically the researchers' development of scales of relative accuracy for evaluating reference questions.

In a 1985 study, Gers and Seward set out to determine the level of resources and the kinds of activities needed in order to achieve predefined levels of reference performance. They found that 57.5 percent of the answers to the questions they asked were found in the World Almanac. They further determined that 87.5 percent of all the questions used in the study could be answered at any library that owned seven particular reference sources--World Almanac, Information Please Almanac, World Book Encyclopedia, Stevenson's Home Book of Quotations, Reader's Guide to Periodical Literature, Motor's or Chilton's Auto Manual--and an unabridged dictionary.

In a 1982 pilot study, Weech and Goldhor evaluated, both obtrusively and unobtrusively, reference service in five Illinois public libraries. As part of the process, they realized the potential for receiving answers that were correct, incorrect, or somewhere between the two and therefore developed accuracy labels to code their data. Their labels were complete and correct, incomplete, incorrect, no answer, and referral.

Olson also developed an accuracy scale for describing degrees of correctness of answers to reference questions. In the article "Reference Service Evaluation in Medium-Sized Academic Libraries," she evaluated reference services, particularly the ability of librarians to successfully find the answer to reference questions posed to them by proxies. As a part of that study she provided values and descriptions for varying levels of accuracy:

* Correct (3 points): All of the criteria for correctness present in the answer.
* Mostly Correct (2 points): Most of the criteria for correctness present; or all of the criteria were present, but the response was couched in a doubtful or hesitant manner.
* Mostly Wrong (1 point): Most of the criteria for correctness were absent; or none of the criteria were present, yet the response was couched in a doubtful or hesitant manner.
* Wrong (0 points): All of the criteria for judging a response "Correct" were absent.
These accuracy labels are useful because they can be adapted to categorizing answers to reference questions from all types of sources. Therefore, they have been adapted in the present study to categorize the answers to questions obtained via the Web.

The discussions of accuracy and guides to evaluation of information covered above illustrate that the Internet and the Web can be precarious reference sources if care and scrutiny are not exercised. As has been noted, however, while there are numerous studies evaluating print sources, little research has been conducted that measures the accuracy of the Web for answering reference questions. We report on a study that begins to examine the accuracy of the Internet and the Web for ready-reference questions.

Research Questions

Measuring the accuracy of the information on the Web is admittedly a near impossible feat. Not only is the Web too vast; but it also presents other problems, such as multiple search engines that lead to different pages for the same information. Multiple languages are used to present the information on the Web. However, it is possible to analyze a small portion of the Web's information by selecting a search engine, querying it, and analyzing a subset of the resulting answers.

A search engine locates information on the Web; in other words, it functions as an index. However, no search engine is able to index the whole Web, due to the Web's enormity. Most offer subject categories from which one may choose; or, the user may type in keywords. The search engine chosen for this study is AltaVista. This paper analyzes certain aspects of AltaVista's efficiency as a search engine, as well as questions of accuracy. It is important to evaluate AltaVista, since the answers received will be affected by how well the search engine functions.

The principal research question for this study is "How accurate is the information on the Web for answering general ready-reference questions?" This question breaks down into the following specific questions:

* What percent of Web pages retrieved through AltaVista are completely correct?
* What percent are mostly correct?
* What percent of Web pages/sites contain no answer at all?
* What percent are mostly wrong?
* What percent are completely wrong?
* What is the average number of duplicate pages listed per search in AltaVista?
* What percent of pages listed through AltaVista are "dead links"?
* What is the average number of times a search must be reworded and then reentered into AltaVista, in order to retrieve the most Web pages that are relevant to the topic?

Methodology

The reference staff at the Upper Arlington Public Library (Ohio) recorded all questions posed to them from October 10 to October 16, 1996, with the exception of in-house directional queries and queries for which the patron required material to browse and study. Staff members recorded these queries after sessions with the patrons, which means that the reference interview and question negotiation were completed at the time the question was recorded.

During the one-week period, 114 legible questions were logged. The list was narrowed to include only ready-reference questions. William Katz's Introduction to Reference Work provides
a useful definition of a ready-reference question: "Queries that require only a single, usually uncomplicated, straightforward answer. The [answers are] normally found in standard reference works, ranging from encyclopedias, to almanacs and indexes." Seventy-three questions remained.

As mentioned earlier, each question was then answered and verified in two sources. Based on the findings of Gers and Seward's study, previously discussed, which found that a large percentage of ready-reference questions can be answered using standard general reference sources, noted reference works such as the *World Almanac* were consulted for the correct responses. We eliminated four more questions because their answers could not be verified in two sources. A random sample of sixty was taken from the resulting set of sixty-nine questions. See the appendix for a list of these questions.

Each query was then entered into the AltaVista search engine, which we selected for several reasons. First, the author who entered the searches is more familiar with AltaVista's search syntax and capabilities than with those of other search engines. Second, AltaVista received favorable reviews from both Netguide and Searcher magazines. In fact, Netguide awarded it "Best Search Engine" (an honor it shared with Lycos and Yahoo!). AltaVista also offers "the greatest control and provides the best command searching." Lastly, AltaVista has been commended for its wide range of power search functions, as well as its daily updates.

If no pertinent answers were found within the first twenty pages listed (or two screens) returned, then we reconstructed the search and entered again. A page is defined as a "document displayed in a client's [i.e., a user's] main window." The relevancy of the recovered pages depended heavily on how well the search was entered. Although this element of skill can be considered a weakness of the research design, the fact that the searcher is an experienced user of AltaVista mitigates this factor somewhat. It is reasonable to assume that an experienced searcher's efforts will result in success that at least equals the success of the majority of users of the Internet and the Web.

After each question was entered, the pages were reviewed in the order in which they were returned. In other words, the first page was accessed first, the second one accessed next, and so on. Since AltaVista ranks Web pages that are most relevant toward the top of the result list, only the first two screens of results were evaluated. Each screen listed ten pages, unless fewer than twenty pages were retrieved. Therefore, either the first twenty pages or the first two screens were evaluated, whichever applied.

A Web site is a "file section of a computer [server] on which [pages and] documents reside. The site typically refers to the specific organization that controls the site." Based on this definition of a Web site, we used the following definition of a duplicate page in this study: a page that shares the same site as another page retrieved. Using this definition means that all the pages offered at the same site are considered to be part of the same tool, while the need to link to a different site results in the use of a different source for the answer to the reference question.

We designed an accuracy value for each page retrieved based on the page’s information as compared to the answer established before the data were gathered. The values used and their descriptions are an adaptation of those of Olson (previously discussed). Following are the descriptions of the accuracy values used and an example of how these values have been applied. The question used for the example is: "What is the telephone number for the Dayton International Airport?" The verified answer is: (937) 454-8200.

1. Correct: *All* of the criteria for correctness are present in the answer.

 The answer found is (937) 454-8200.
2. Mostly Correct: Most of the criteria for correctness are present, and no wrong information is given.

The answer found is 454-8200. No wrong information has been provided; however, the area code has not been supplied.

3. No Answer: No answer (either correct or wrong) is found at all.

The page relates information about the Dayton International Airport; but it does not include the airport's telephone number.

4. Mostly Wrong: Most of the criteria for correctness are absent and/or incorrect information is also included.

The answer found is: (513) 454-8200. This answer lists the old area code. With this outdated information, the answer is mostly wrong.

5. Wrong: Completely incorrect information is supplied; all criteria for judging an answer "Correct" are absent.

The answer found is: (513) 544-2800. The area code has been superseded and there are errors in the local portion of the number.

Results and Discussion

Two technical points should be kept in mind before reading the research findings. First, the question of the average number of duplicate pages listed per search in AltaVista must be qualified: note that the average encompasses only the first twenty Web pages returned or the first two screens, whichever applies. It is also important to reiterate that the definition of a Web site used in this study includes all of the different pages that share a site on a server. Therefore, a page has been counted as a duplicate if it resides on the same site as another page that is retrieved.

In our study, the number of duplicate pages (241) divided by the number of questions (60), resulted in an average of 4.02 duplicate pages listed by AltaVista within its first 20 returns. Proportionally, the total number of duplicate pages constitutes 20.8 percent (241 of 1,160) of all pages reviewed for this research. One possible explanation as to why these figures are so high involves the process used by search engines to find information on the Web. Most search engines use a software program to gather their sites. This program, sometimes called a spider or a crawler, collects every Web page it finds, regardless of whether it has already cataloged the site. This indiscriminate amassment of Web sites leads to a high number of duplicates in AltaVista's database. For instance, the search results of the question "What is the telephone number for Shreve and Company in San Francisco, Calif.?" contain eleven duplicate pages; ten of these are about the company's site, yet one details Shreve's history while another offers a store tour. The pages provide different information but are considered duplicates in this study due to their shared site. On the other hand, AltaVista has indexed each of these and presents them as if they are completely disparate. Since AltaVista does not employ staff to remove duplicates, the average number of duplicate pages recovered by AltaVista within its first twenty returns will probably increase even more over time.

The percentage of "dead links" retrieved through AltaVista in this study are also calculated using the first twenty pages or the first two screens, whichever applies. Dead links are those that no longer jump to a different page (or site) when selected. Instead, selecting a dead link results in either an error message or a "server may be down" response. Usually, such messages indicate that the Web page or site is not being maintained and therefore cannot be accessed. Dead links comprise 12.4 percent of the total number of pages retrieved (144 of 1,160).
Table 1
Frequency Distribution of Accuracy Scores for Returned Web Pages

<table>
<thead>
<tr>
<th>Value Assigned</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>160</td>
<td>15.8</td>
</tr>
<tr>
<td>Mostly correct</td>
<td>115</td>
<td>11.4</td>
</tr>
<tr>
<td>No Answer</td>
<td>646</td>
<td>64.0</td>
</tr>
<tr>
<td>Mostly wrong</td>
<td>64</td>
<td>6.3</td>
</tr>
<tr>
<td>Wrong</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Totals</td>
<td>1,010*</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Total number of Web Pages retrieved (1,160) minus the number of dead links (144) and foreign language pages.

Adding the number of dead links (144) and duplicates (241) retrieved results in 385 instances of pages that are of marginal or no use. Taking into account the 35 dead links that are also duplicates, 30.2 percent of the pages evaluated are of marginal or no use (350 of 1,160). If the searcher is limited to using English-language sites, the number of unusable pages increases to 356, or 30.7 percent of the total.

The third examined aspect of AltaVista's effectiveness was the number of times a search must be reworded then reentered in order to retrieve the largest number of Web pages relevant to the topic. For instance, one of the questions we collected was, "How do you spell Deion Sanders's first name?" Since the correct spelling was verified during the creation of the evaluation key, the search 'deion sanders' was entered in AltaVista. Many pages were returned with this correct spelling. However, if the spelling had not been verified for the purposes of this research, another search might have been entered, for example, "deon sanders." We retrieved more than one hundred pages by entering this common misspelling, and eight of the first twenty presented the incorrect information. This example illustrates how important it is to consider what is entered into a search engine.

Throughout the study, searches had to be reworded and reentered because they retrieved no relevant pages within the first two screens as initially entered. The average number of searches reentered results in 1.77 search attempts per question (106 searches for 60 questions). The data we present here are based on the reworded, reentered searches. No statistics are reported on the first search(es) that were submitted.

The remaining research questions involve the accuracy values we assigned to each Web page retrieved. The results are presented in table 1.

The data in the table indicate that nearly two-thirds (64 percent) of the pages evaluated provided no answer whatsoever. This figure is high. One possible explanation for this high rate of failure is that searches in AltaVista (as well as other search engines) are keyword in nature. Even if a phrase search is entered by enclosing the phrase in double quotation marks (AltaVista's phrase syntax), AltaVista will still recover some Web pages that contain those keywords but do not have the meaning intended. Consequently, irrelevant pages are returned to the searcher. For example, we entered the search query *Raiders of the Lost Ark* and "running time" for the question, "What is the length of the movie *Raiders of the Lost Ark*?" One of the retrieved sites included information on the running time it took to make the movie, but not the running time of the movie itself.

Only 8.8 percent of the pages presented wrong or mostly wrong information. In light of so much media attention warning Web users to be skeptical of the information attained via the
Web, one can be led to believe that most of it is fraught with inaccuracies. These data indicate that not finding an answer at all is a much more likely scenario. While it is somewhat reassuring that only 2.5 percent of the pages produced totally wrong results, combining the categories of answers that are wrong, mostly wrong, and no answer produce a situation that is much less positive. More than seven in ten pages retrieved (72.8 percent) resulted in some degree of failure. Slightly more than 27 percent of the pages supplied correct and mostly correct results. While higher than the figures for wrong and mostly wrong (8.8 percent), this figure is nonetheless low and raises questions concerning the efficiency of using the Web for ready-reference questions, at least at this point in time.

As to the overall question of how accurate the Web is for answering general ready-reference questions, the data can be viewed in a couple of ways. Assuming an answer is found, the searcher has a 75.5 percent chance (275 of 364) of finding a response that is either completely correct or mostly correct. Conversely, the searcher would have a 24.5 percent chance (89 of 364) that the answer would be either mostly wrong or completely wrong.

Another way to view the data is to take into account all the pages retrieved. Taking this approach, the chance of finding correct or mostly correct information plummets to 27.2 percent (275 of 1,010). The likelihood of recovering wrong or mostly wrong data stays at 8.8 percent (89 of 1,010). Although these percentages are reduced considerably when the "no answer" category is figured into the equation, they still indicate that there is a better chance of finding correct and mostly correct information than wrong and mostly wrong answers.

Summary and Conclusions

How accurate is the Web for answering general ready-reference questions? When considering only those pages that contained some answer to the question, the findings indicate that 75.5 percent of the pages presented correct and mostly correct information; 24.5 percent of the pages contained wrong and mostly wrong information. However, considering all pages retrieved, the findings indicate that the vast majority of the pages (64 percent) contained no answer (either correct or incorrect) at all. Correct and mostly correct answers were found 27.2 percent of the time, while wrong and mostly wrong answers were found 8.8 percent of the time. The odds are in favor of finding correct information before incorrect; if any is found at all. However, a nearly 73 percent failure rate raises questions concerning the efficiency of using the Web for ready-reference questions, especially if only one search engine is used.

Further research is needed to determine whether success increases with the use of multiple search engines. The authors are currently examining this issue as well as whether domain names of sites can be used to predict the likelihood of finding accurate answers. An additional issue of practical interest is how accurate is the information on the Web for answering more complex reference questions.

References and Notes

16. Ibid.
18. Gers and Seward, "Improving Reference Performance."
19. Ibid.
22. Ibid., 328.
Appendix
Ready-Reference Questions Used In This Study
1. What is the telephone number for the Dayton International Airport?
2. What is the disease, herpangina?
3. What is the length of the movie, Raiders of the Lost Ark?
4. What is the customer service number for L.L. Bean?
5. What are the proper growing conditions for the Japanese Red Pine, and how tall does it get?
6. Review of the White House Bistro, a restaurant in Columbus, Ohio.
7. Information about King's Island--such as fees, hours of operation, etc.
8. What is the highest point in Romania?
9. What is the telephone number for the Franklin County Board of Elections in Columbus, Ohio?
10. What is Global Green USA, and what do they do?
11. What is the history of the bra?
12. Who are the members of President Clinton's cabinet?
13. What is the telephone number for the headquarters of Salvatore Ferragamo?
14. What is the Code of Ethics for Psychologists?
15. What are the investment qualities of REITs?
16. What is the complete quotation that contains the phrase, "the pendulum swinging back," and who said it?
17. Who was Sophie Germain and what was she known for?
18. Reviews of the movie, Pulp Fiction.
19. In which document does the phrase, "We hold these truths to be self-evident..." appear?
20. Literary criticism of Louisa May Alcott's Little Women.
22. What is the telephone number for the Columbus office of Representative Deborah Pryce?
23. Who was Howard Hughes and what did he do?
24. What type of refrigerator is the best to buy?
25. When and where did Hurricane Emily hit? How much damage was there?
26. How does the tarantula hawk wasp mate and where is this insect found?
27. What is the address and telephone number for the Golden Lamb?
28. Information on the different filing statuses for taxes.
29. What is the population of Columbus, Ohio?
30. What is the telephone number for the Crystal Clinic in Akron, Ohio?
31. What is the telephone number for the Art Institute of Chicago?
32. What is the telephone number for West Publishing?
34. Who was Annie Oakley and for what was she known?
35. What is the telephone number for the vital records department in California?
36. What is Upper Arlington, Ohio's Leash Law?
37. How do you spell Deion Sanders' first name?
38. What are the telephone number and address for LeHigh University?
39. What is the telephone number for Shands Hospital in Gainesville, Florida?
40. Who was John Rutter and for what was he known?
41. Is the lead in miniblinds dangerous?
42. What is Sinn Fein?
43. What is the history of the 22nd amendment?
44. Who is the author of Primary Colors?
45. Why do leaves change color in the autumn?
46. What does the company Carlson Hospitality do, and where is it based?
47. What is Canine Companions for Independence, and where is its headquarters?
48. What were the highlights of Dwight Eisenhower's life?
49. What is the telephone number for Shreve & Co. in San Francisco, California?
50. Which of the 50 states have the death penalty?
51. What is the address and telephone number for International Wristwatch, a magazine?
52. What is the location of Bluffton College, and what are its enrollment statistics?
53. What is the toll-free telephone number for the Department of Tourism in North Carolina?
54. What is the address and telephone number for the Greater Columbus Convention & Visitors Bureau?
55. What does the company Boehringer-Mannheim German do, and where are they based?
56. What is the address and telephone number for the Chamber of Commerce in Park City, Utah?
57. What were the major events of the American Revolution?
58. What do tiger beetles eat?
59. What are the birth and death dates of Jesse Owens?
60. Who was the first prime minister of Canada?