1957-11

Book Notices

The Ohio Journal of Science. v57 n6 (November, 1957), 378
http://hdl.handle.net/1811/4491

Downloaded from the Knowledge Bank, The Ohio State University's institutional repository

This book is a compilation of data to show that every genetically distinct individual is biochemically different from every other individual with respect to the amounts of all chemical constituents so far tested, excretion patterns in the urine and in nutritional requirements. The latter embodies what the author calls the "genetotrophic concept." The differences between the few persons tested have often been as great as ten fold or more. The maximum requirement of one person may be only a tenth as much as the minimal requirement for the same substance in another person. Disease is regarded as the failure in nutritional intake to meet the optimal needs of the individual for a specific chemical compound. Nutritional science has solved the etiologies of such diseases as scurvy and pellagra, but has failed to explore the probability that nutritional deficiencies are the basis of diseases, the causes of which are still obscure.

About one seventh of the text is devoted to anatomical variations (e.g., difference in branching of nerves, ducts, blood vessels), regarded as genetically produced. No evidence is offered in support of this contention such as similar or identical patterns being found in identical twins or in members of the same inbred strain of animals. The reviewer is an ardent believer in the importance of heredity, but would suggest that this chapter is out of place in a text on biochemical variations, and that the assumption that because there is variation, it must of necessity be genetic, may not be justified.

Finally the author injects a totally unwarranted and extraneous piece of propaganda into his text when he states that if human beings are as highly individualistic as the data indicate, "It is clear that the patient—personal physician relationship is extremely valuable, and any system undermining it should be shunned." He further states that only if people are replicas of each other can they best be looked after by a government established "Health-mill," but that the data on biochemical individuality point in the opposite direction. The reviewer would point out that yellow fever, small-pox, diphtheria, malaria, etc., were successfully eliminated by treating people as if they were replicas of each other so that the health mill has ground out some rather valuable results. Furthermore, the reviewer is not aware that the patient selects his physician because of similarity in blood groups, excretion of amino acids, or vitamin requirements. The much discussed "personal" relationship between patient and doctor usually consists of an intimate two hour acquaintance with the magazines in the waiting room, and a too often cursory examination of ten minutes or less in the inner sanctum.

Nevertheless, this is excellent source material for persons interested in biochemical variations; but the reviewer wonders just how practical the author's practical applications are. If every patient must be investigated biochemically for all of the constituents encountered in the human body, the time and cost of such a program would be prohibitive.

MADGE T. MACKLIN, M. D.


The basic nuclear physics of nuclear reactors are not emphasized in this book. The control problems are extensively and thoroughly considered. Frequent use is made of block diagrams. The book is most suitable for engineers who understand servomechanisms, electronics and mathematics. The subject matter is very practical, such as startup control, power operation control, and shutdown control. A chapter is devoted to simulators. A list of problems is included for ten of the eleven chapters.

M. L. POOL