Book Notices

This is a new book which emphasizes chemical aspects of bacterial physiology. Although most of the text is pitched at a relatively elementary level, previous comprehensive training in organic chemistry is required for understanding the book and beginning courses in physical chemistry and calculus are desirable prerequisites.

The book covers general principles of physical and colloidal chemistry; cytology of bacteria; microbial metabolism; autotrophic and heterotrophic bacteria; and growth, variation and death of bacteria. The style and content are conservative and conform fairly well to previous texts on bacterial physiology. Tables, graphs, and illustrative diagrams are used frequently to clarify various principles. The publishers present an attractive, well-bound, and easily read text.

Bibliographies of recent and pertinent literature are included at the end of each chapter. "Introduction to Bacterial Physiology" is a good text and should prove to be of special value for reference use.

Grant L. Stahly


This book, written by a distinguished Dutch geologist, is intended for a trained geologist or an advanced student; it is not suitable as a text in an introductory course in structural geology. The book has special interest for American geologists because it contains an up-to-date account of the structure of numerous tectonic areas of Europe. It is primarily concerned with systematizing detailed knowledge about structural geology in order to distinguish genetic relationships.

Part One, Theoretical Structural Geology, describes physical properties of rocks, experimental work, and rock behavior in tectonic processes. In Part Two is much detail on comparative structural geology, proceeding from simple to more complex structures. Part Three defines some characteristics of the largest structural units and discusses theories concerning their origin. The author accepts the notion that intensity of folding and faulting vary somewhat erratically in time and place over a stressed region. He distinguishes only three world-wide orogenic periods, and recognizes that even these are not fully equivalent.

George E. Moore, Jr.